scholarly journals Are enhanced muscle adaptations associated with carbohydrate restriction regulated by absolute muscle glycogen concentration?

2020 ◽  
Vol 598 (2) ◽  
pp. 221-223
Author(s):  
Francisco Javier Diaz‐Lara ◽  
Javier Botella ◽  
Elizabeth Reisman
1997 ◽  
Vol 272 (4) ◽  
pp. E649-E655 ◽  
Author(s):  
J. Jensen ◽  
R. Aslesen ◽  
J. L. Ivy ◽  
O. Brors

The effects of diet-manipulated variations in muscle glycogen concentration and epinephrine on glucose uptake were studied in epitrochlearis muscles from Wistar rats. Both basal and insulin-stimulated glucose uptake [measured with a tracer amount of 2-[1,2-3H(N)]deoxy-D-glucose] inversely correlated with initial glycogen concentration (glycogen concentration vs. basal glucose uptake: Spearman's rho = -0.76, n = 84, P < 0.000001; glycogen concentration vs. insulin-stimulated glucose uptake: Spearman's rho = -0.67, n = 44, P < 0.00001). Two fasting-refeeding procedures were used that resulted in differences in muscle glycogen concentrations, although with similar treatment for the last 48 h before the experiment. In the rats with the lower glycogen concentration, basal as well as insulin-stimulated glucose uptake was elevated. The muscle glycogen concentration had no effect on epinephrine-stimulated glycogenolysis. Epinephrine, however, was found to reduce basal glucose uptake in all groups. These results suggest that 1) the glycogen concentration participates in the regulation of both basal and insulin-stimulated glucose uptake in skeletal muscle, 2) the magnitude of epinephrine-stimulated glycogen breakdown is independent of the glycogen concentration, and 3) epinephrine inhibits basal glucose uptake at all glycogen concentrations.


2005 ◽  
Vol 45 (5) ◽  
pp. 543 ◽  
Author(s):  
R. H. Jacob ◽  
D. W. Pethick ◽  
H. M. Chapman

The aim of this study was to gain an understanding of the distribution of glycogen concentrations and ultimate pH (pHu) in 2 different muscle types for lambs slaughtered under commercial conditions in Western Australia, and to compare muscle glycogen concentrations in lambs on farm and after slaughter. The study included 13 different consignments of prime lambs from a range of commercial scenarios. In each consignment, muscle glycogen concentration was measured in a group of lambs on farm and subsequently after slaughter in 3 different lairage groups. The lairage groups were: slaughter on arrival (no lairage), slaughter after 1 day, and slaughter after 2 days in lairage. Biopsies of M. semimembranosus and the M. semitendinosus were taken from live lambs on farm just before farm curfew before transport and from carcasses immediately after slaughter. There was a significant effect of consignment on muscle glycogen concentration. Muscle glycogen concentrations on farm were lower than 1 g/100 g in 4 consignments for the M. semimembranosus and 11 consignments for the M. semitendinosus. The cause of the differences between consignments was unclear as nutrition, genotype and age class were confounded between consignments. Glycogen concentrations were lower and meat pHu higher for sucker lamb compared with carry-over lamb consignments. However, lambs finished on grain-based feedlot rations had higher muscle glycogen concentrations than lambs finished on pasture and sucker lambs when finished on pastures only. Sucker lambs were only crossbred while carry-over lambs included crossbred and Merino genotypes. When data from different consignments were pooled and the effect of consignment was considered, there were no differences between muscle glycogen concentration measured on farm and muscle glycogen concentration measured after slaughter. However, there were differences between sample times within individual consignments. Glycogen concentration at slaughter was different from glycogen concentration on farm in more consignments for M. semitendinosus than M. semimembranosus, suggesting a difference between consignments for the effect caused by stress. Typically, the M. semimembranosus glycogen concentration at slaughter was lower than on farm in consignments consisting of Merino genotypes that had high muscle glycogen concentrations on farm. In the consignments in which lairage time had an effect on muscle glycogen concentration, the differences were small. In some consignments a difference occurred between lairage times for pHu without any difference occurring for muscle glycogen concentration.


1993 ◽  
Vol 74 (6) ◽  
pp. 2998-3005 ◽  
Author(s):  
J. J. Widrick ◽  
D. L. Costill ◽  
W. J. Fink ◽  
M. S. Hickey ◽  
G. K. McConell ◽  
...  

To determine whether the ergogenic benefits of carbohydrate (CHO) feedings are affected by preexercise muscle glycogen levels, eight cyclists performed four self-paced time trials on an isokinetic ergometer over a simulated distance of 70 km. Trials were performed under the following preexercise muscle glycogen and beverage conditions: 1) high glycogen (180.2 +/- 9.7 mmol/kg wet wt) with a CHO beverage (HG-CHO), 2) high glycogen (170.2 +/- 10.4 mmol/kg wet wt) with a non-CHO beverage (HG-NCHO), 3) low glycogen (99.8 +/- 6.0 mmol/kg wet wt) with a CHO beverage (LG-CHO), and 4) low glycogen (109.7 +/- 5.3 mmol/kg wet wt) with a non-CHO beverage (LG-NCHO). The CHO drink (ingested at the onset of exercise and every 10 km thereafter) provided 116 +/- 6 g CHO/trial and prevented the decline in serum glucose observed during both NCHO trials. Performance times ranged from 117.93 +/- 1.44 (HG-CHO) to 122.91 +/- 2.46 min (LG-NCHO). No intertrial differences (P > 0.05) were observed for O2 consumption (75% of maximal O2 consumption), power output (237 W), or self-selected pace (8.44 min/5 km) during the initial 71–79% of exercise. Over the final 14% of the time trial, power output and pace (231 W and 8.62 min/5 km) were similar for the HG-CHO, HG-NCHO, and LG-CHO conditions, but both variables were significantly lower during the LG-NCHO trial (198 W and 9.67 min/5 km, P < 0.05 vs. all other trials).(ABSTRACT TRUNCATED AT 250 WORDS)


1992 ◽  
Vol 284 (3) ◽  
pp. 777-780 ◽  
Author(s):  
P Hespel ◽  
E A Richter

The influence of differences in glycogen concentration on glycogen breakdown and on phosphorylase activity was investigated in perfused contracting rat skeletal muscle. The rats were preconditioned by a combination of swimming exercise and diet (carbohydrate-free or carbohydrate-rich) in order to obtain four sub-groups of rats with varying resting muscle glycogen concentrations (range 10-60 mumol/g wet wt.). Pre-contraction muscle glycogen concentration was closely positively correlated with glycogen breakdown over 15 min of intermittent short tetanic contractions (r = 0.75; P less than 0.001; n = 56) at the same tension development and oxygen uptake. Additional studies in supercompensated and glycogen-depleted hindquarters during electrical stimulation for 20 s or 2 min revealed that the difference in glycogenolytic rate was found at the beginning rather than at the end of the contraction period. Phosphorylase alpha activity was approximately twice as high (P less than 0.001) in supercompensated muscles as in glycogen-depleted muscles after 20 s as well as after 2 min of contractions. It is concluded that glycogen concentration is an important determinant of phosphorylase activity in contracting skeletal muscle, and probably via this mechanism a regulator of glycogenolytic rate during muscle contraction.


2000 ◽  
Vol 278 (4) ◽  
pp. E588-E592 ◽  
Author(s):  
Jian-Ming Ren ◽  
Nicole Barucci ◽  
Bess A. Marshall ◽  
Polly Hansen ◽  
Mike M. Mueckler ◽  
...  

The purpose of the present study was to determine the rates of muscle glycogenolysis and glycogenesis during and after exercise in GLUT-1 transgenic mice and their age-matched littermates. Male transgenic mice (TG) expressing a high level of human GLUT-1 and their nontransgenic (NT) littermates underwent 3 h of swimming. Glycogen concentration was determined in gastrocnemius and extensor digitorum longus (EDL) muscles before exercise and at 0, 5, and 24 h postexercise, during which food (chow) and 10% glucose solution (as drinking water) were provided. Exercise resulted in ∼90% reduction in muscle glycogen in both NT (from 11.2 ± 1.4 to 2.1 ± 1.3 μmol/g) and TG (from 99.3 ± 4.7 to 11.8 ± 4.3 μmol/g) in gastrocnemius muscle. During recovery from exercise, the glycogen concentration increased to 38.2 ± 7.3 (5 h postexercise) and 40.5 ± 2.8 μmol/g (24 h postexercise) in NT mice. In TG mice, however, the increase in muscle glycogen concentration during recovery was greater (to 57.5 ± 7.4 and 152.1 ± 15.7 μmol/g at 5 and 24 h postexercise, respectively). Similar results were obtained from EDL muscle. The rate of 2-deoxyglucose uptake measured in isolated EDL muscles was 7- to 10-fold higher in TG mice at rest and at 0 and 5 h postexercise. There was no difference in muscle glycogen synthase activation measured in gastrocnemius muscles between NT and TG mice immediately after exercise. These results demonstrate that the rate of muscle glycogen accumulation postexercise exhibits two phases in TG: 1) an early phase (0–5 h), with rapid glycogen accumulation similar to that of NT mice, and 2) a progressive increase in muscle glycogen concentration, which differs from that of NT mice, during the second phase (5–24 h). Our data suggest that the high level of steady-state muscle glycogen in TG mice is due to the increase in muscle glucose transport activity.


1995 ◽  
Vol 78 (4) ◽  
pp. 1360-1368 ◽  
Author(s):  
M. A. Tarnopolsky ◽  
S. A. Atkinson ◽  
S. M. Phillips ◽  
J. D. MacDougall

During endurance exercise at approximately 65% maximal O2 consumption, women oxidize more lipids, and therefore decrease carbohydrate and protein oxidation, compared with men (L.J. Tarnopolsky, M.A. Tarnopolsky, S.A. Atkinson, and J.D. MacDougall. J. Appl. Physiol. 68: 302–308, 1990; S.M. Phillips, S.A. Atkinson, M.A. Tarnopolsky, and J.D. MacDougall. J. Appl. Physiol. 75: 2134–2141, 1993). The main purpose of this study was to examine the ability of similarly trained male (n = 7) and female (n = 8) endurance athletes to increase muscle glycogen concentrations in response to an increase in dietary carbohydrate from 55–60 to 75% of energy intake for a period of 4 days (carbohydrate loading). In addition, we sought to examine whether gender differences existed in metabolism during submaximal endurance cycling at 75% peak O2 consumption (VO2 peak) for 60 min. The men increased muscle glycogen concentration by 41% in response to the dietary manipulation and had a corresponding increase in performance time during an 85% VO2 peak trial (45%), whereas the women did not increase glycogen concentration (0%) or performance time (5%). The women oxidized significantly more lipid and less carbohydrate and protein compared with the men during exercise at 75% VO2-peak. We conclude that women did not increase muscle glycogen in response to the 4-day regimen of carbohydrate loading described. In addition, these data support previous observations of greater lipid and lower carbohydrate and protein oxidation by women vs. men during submaximal endurance exercise.


Sign in / Sign up

Export Citation Format

Share Document