leg cycling
Recently Published Documents


TOTAL DOCUMENTS

216
(FIVE YEARS 42)

H-INDEX

30
(FIVE YEARS 2)

Author(s):  
Jan Elaine Soriano ◽  
Rinaldo Romac ◽  
Jordan W Squair ◽  
Otto F Barak ◽  
Zoe K Sarafis ◽  
...  

Individuals with cervical spinal cord injury (SCI) are at an increased risk for cardiovascular disease. Exercise is well-established for preventing cardiovascular disease, however, there are limited straightforward and safe exercise approaches for increasing the activity of the cardiorespiratory system after cervical SCI. The objective of this study was to investigate the cardiorespiratory response to passive leg cycling in people with cervical SCI. Beat-by-beat blood pressure, heart rate, and cerebral blood flow were measured before and throughout 10 minutes of cycling in 11 people with SCI. Femoral artery flow-mediated dilation was also assessed before and immediately after passive cycling. Safety was monitored throughout all study visits. Passive cycling elevated systolic blood pressure (5±2 mmHg), mean arterial pressure (5±3 mmHg), stroke volume (2.4±0.8 mL), heart rate (2±1 beats/min) and cardiac output (0.3±0.07 L/min; all p<0.05). Minute ventilation (0.67±0.23 L/min), tidal volume (70±30 mL) and end-tidal PO2 (2.6±1.23 mmHg) also increased (all p<0.05). Endothelial function was improved immediately after exercise (1.62±0.13%, p<0.01). Passive cycling resulted in one incidence of autonomic dysreflexia. Therefore, passive leg cycling increased the activity of the cardiorespiratory system, improved endothelial function, indicating it may be a beneficial exercise intervention for the cardiovascular and respiratory systems in people with cervical SCI. Novelty: ● Passive leg cycling increases the activity of the cardiorespiratory system and improves markers of cardiovascular health in cervical SCI. ● Passive leg cycling exercise is an effective, low-cost, practical, alternative exercise modality for people with cervical SCI.


BMJ Open ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. e049884
Author(s):  
Jean-Marc Mac-Thiong ◽  
Andreane Richard-Denis ◽  
Yvan Petit ◽  
Francis Bernard ◽  
Dorothy Barthélemy ◽  
...  

IntroductionActivity-based therapy (ABT) is an important aspect of rehabilitation following traumatic spinal cord injury (SCI). Unfortunately, it has never been adapted to acute care despite compelling preclinical evidence showing that it is safe and effective for promoting neurological recovery when started within days after SCI. This article provides the protocol for a study that will determine the feasibility and explore potential benefits of early ABT in the form of in-bed leg cycling initiated within 48 hours after the end of spinal surgery for SCI.Methods and analysisPROMPT-SCI (protocol for rapid onset of mobilisation in patients with traumatic SCI) is a single-site single-arm proof-of-concept trial. Forty-five patients aged 18 years or older with a severe traumatic SCI (American Spinal Injury Association Impairment Scale grade A, B or C) from C0 to L2 undergoing spinal surgery within 48 hours of the injury will be included. Participants will receive daily 30 min continuous sessions of in-bed leg cycling for 14 consecutive days, initiated within 48 hours of the end of spinal surgery. The feasibility outcomes are: (1) absence of serious adverse events associated with cycling, (2) completion of 1 full session within 48 hours of spinal surgery for 90% of participants and (3) completion of 11 sessions for 80% of participants. Patient outcomes 6 weeks and 6 months after the injury will be measured using neurofunctional assessments, quality of life questionnaires and inpatient length of stay. Feasibility and patient outcomes will be analysed with descriptive statistics. Patient outcomes will also be compared with a matched historical cohort that has not undergone in-bed cycling using McNemar and Student’s t-tests for binary and continuous outcomes, respectively.Ethics and disseminationPROMPT-SCI is approved by the Research Ethics Board of the CIUSSS NIM. Recruitment began in April 2021. Dissemination strategies include publications in scientific journals and presentations at conferences.Trial registration numberNCT04699474.


2021 ◽  
Vol 12 ◽  
Author(s):  
Todd A. Astorino ◽  
Danielle Emma

This study compared changes in oxygen uptake (VO2), heart rate (HR), blood lactate concentration (BLa), affective valence, and rating of perceived exertion (RPE) between sessions of high intensity interval exercise (HIIE) performed on the arm (ACE) and leg cycle ergometer (LCE). Twenty three active and non-obese men and women (age and BMI=24.7±5.8year and 24.8±3.4kg/m2) initially underwent graded exercise testing to determine VO2max and peak power output (PPO) on both ergometers. Subsequently on two separate days, they performed 10 1min intervals of ACE or LCE at 75 %PPO separated by 1min of active recovery at 10 %PPO. Gas exchange data, HR, and perceptual responses were obtained continuously and blood samples were acquired pre- and post-exercise to assess the change in BLa. VO2max and PPO on the LCE were significantly higher (p&lt;0.001) than ACE (37.2±6.3 vs. 26.3±6.6ml/kg/min and 259.0±48.0 vs. 120.0±48.1W). Mean VO2 (1.7±0.3 vs. 1.1±0.3L/min, d=2.3) and HR (149±14 vs. 131±17 b/min, d=2.1) were higher (p&lt;0.001) in response to LCE vs. ACE as was BLa (7.6±2.6 vs. 5.3±2.5mM, d=2.3), yet there was no difference (p=0.12) in peak VO2 or HR. Leg cycling elicited higher relative HR compared to ACE (81±5 vs. 75±7 %HRmax, p=0.01), although, there was no difference in relative VO2 (63±6 vs. 60±8 %VO2max, p=0.09) between modes. Affective valence was lower during LCE vs. ACE (p=0.003), although no differences in enjoyment (p=0.68) or RPE (p=0.59) were demonstrated. Overall, HIIE performed on the cycle ergometer elicits higher relative heart rate and blood lactate concentration and a more aversive affective valence, making these modes not interchangeable in terms of the acute physiological and perceptual response to interval based exercise.


Author(s):  
Alessio del Torto ◽  
Carlo Capelli ◽  
Roberto Peressutti ◽  
Adriana di Silvestre ◽  
Ugolino Livi ◽  
...  

Maximal oxygen consumption (V̇O2max) is impaired in heart (HTx), kidney (KTx), and liver (LTx) transplanted recipients and the contribution of the cardiovascular, central, and peripheral (muscular) factors in affecting V̇O2max improvement after endurance training (ET) has never been quantified in these patients. ET protocols involving single leg cycling (SL) elicit larger improvements of the peripheral factors affecting O2 diffusion and utilization than the double leg (DL) cycling ET. Therefore, this study aimed to compare the effects of SL-ET vs DL-ET on V̇O2max. We determined the DL-V̇O2max and maximal cardiac output before and after 24 SL-ET vs DL-ET sessions on 33 patients (HTx = 13, KTx = 11 and LTx = 9). The DL-V̇O2max increased by 13.8% ± 8.7 (p < 0.001) following the SL-ET, due to a larger maximal O2 systemic extraction; meanwhile, V̇O2max in DL-ET increased by 18.6% ± 12.7 (p < 0.001) because of concomitant central and peripheral adaptations. We speculate that in transplanted recipients, SL-ET is as effective as DL-ET to improve V̇O2max and that the impaired peripheral O2 extraction and/or utilization play an important role in limiting V̇O2max in these types of patients. Novelty: SL-ET increases V̇O2max in transplanted recipients because of improved peripheral O2 extraction and/or utilization. SL-ET is as successful as DL-ET to improve the cardiorespiratory fitness in transplanted recipients. The model of V̇O2max limitation indicates the peripheral factors as a remarkable limitation to the V̇O2max in these patients.


Metabolites ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 334
Author(s):  
Julie Calonne ◽  
Elie-Jacques Fares ◽  
Jean-Pierre Montani ◽  
Yves Schutz ◽  
Abdul Dulloo ◽  
...  

Societal erosion of daily life low-level physical activity has had a great influence on the obesity epidemic. Given that low fat oxidation is also a risk factor for obesity, we investigated, in a repeated measures design, the dynamics of fat oxidation from a resting state to a light-intensity leg cycling exercise (0–50 watts) in inactive, healthy young adults. Using indirect calorimetry, energy expenditure and the respiratory quotient (RQ) were assessed in a sitting posture at rest and during a cycling exercise in 35 subjects (20 women). The rate of perceived exhaustion (RPE) was assessed using the Borg Scale. During graded leg cycling, the mean RPE did not exceed values corresponding to the exercise being perceived as ‘light’. However, analysis of individual data at 50 watts revealed two distinct subgroups among the subjects: those having RPE values corresponding to the exercise being perceived as ‘very light to light’ and showing no increase in RQ relative to resting levels, as opposed to an increase in RQ in those who perceived the exercise as being ‘somewhat hard to hard’ (p < 0.001). Our study in inactive individuals showing that high fat oxidation was maintained during ‘light-perceived’ physical activity reinforced the potential importance of light physical activity in the prevention of obesity.


Author(s):  
John W. Farrell ◽  
Thomas Edwards ◽  
Robert W. Motl ◽  
Lara A. Pilutti

Abstract Background: Lower limb strength asymmetry (ie, significant difference between contralateral limbs) has been associated with mobility impairment in persons with multiple sclerosis (MS). However, whether an adaptive exercise modality can be used to modify lower limb strength and potentially improve mobility is unclear. The effect of functional electrical stimulation (FES) cycling on lower limb strength asymmetry in persons with MS with mobility impairment was assessed, and the association between change in lower limb strength asymmetries and changes in functional and self-reported mobility outcomes was explored. Methods: Eight adults with MS (Expanded Disability Status Scale scores, 5.5–6.5) were included. Outcomes included knee extensor and knee flexor strength asymmetry, Timed 25-Foot Walk (T25FW) test, 2-Minute Walk Test (2MWT), Timed Up and Go (TUG) test, and 12-item Multiple Sclerosis Walking Scale (MSWS-12). Participants received 24 weeks (three times per week) of FES cycling or passive leg cycling. Results: The FES condition demonstrated a small decrease in knee extensor (d = −0.33) and knee flexor (d = −0.23) strength asymmetry compared with passive leg cycling. With both groups combined, moderate-to-strong associations were observed between change in knee extensor asymmetry and change in T25FW test time (rs = −0.43), 2MWT time (rs = −0.24), TUG test time (rs = 0.55), and MSWS-12 score (rs = 0.43). Moderate correlations were observed between change in knee flexor asymmetry and change in T25FW test time (rs = −0.31), TUG test time (rs = 0.33), and MSWS-12 score (rs = 0.35). Conclusions: FES cycling may be an efficacious exercise modality for reducing lower limb strength asymmetry and improving mobility in persons with MS.


2021 ◽  
Vol 15 ◽  
Author(s):  
Behdad Parhizi ◽  
Trevor S. Barss ◽  
Vivian K. Mushahwar

Coupling between cervical and lumbar spinal networks (cervico-lumbar coupling) is vital during human locomotion. Impaired cervico-lumbar coupling after neural injuries or diseases can be reengaged via simultaneous arm and leg cycling training. Sensorimotor circuitry including cervico-lumbar coupling may further be enhanced by non-invasive modulation of spinal circuity using transcutaneous spinal cord stimulation (tSCS). This project aimed to determine the effect of cervical, lumbar, or combined tSCS on spinal reflex (Hoffmann [H-]) and corticospinal (motor evoked potential [MEP]) excitability during a static or cycling cervico-lumbar coupling task. Fourteen neurologically intact study participants were seated in a recumbent leg cycling system. H-reflex and MEP amplitudes were assessed in the left flexor carpi radialis (FCR) muscle during two tasks (Static and Cycling) and four conditions: (1) No tSCS, (2) tSCS applied to the cervical enlargement (Cervical); (3) tSCS applied to the lumbar enlargement (Lumbar); (4) simultaneous cervical and lumbar tSCS (Combined). While cervical tSCS did not alter FCR H-reflex amplitude relative to No tSCS, lumbar tSCS significantly facilitated H-reflex amplitude by 11.1%, and combined cervical and lumbar tSCS significantly enhanced the facilitation to 19.6%. Neither cervical nor lumbar tSCS altered MEP amplitude alone (+4.9 and 1.8% relative to legs static, No tSCS); however, combined tSCS significantly increased MEP amplitude by 19.7% compared to No tSCS. Leg cycling alone significantly suppressed the FCR H-reflex relative to static, No tSCS by 13.6%, while facilitating MEP amplitude by 18.6%. When combined with leg cycling, tSCS was unable to alter excitability for any condition. This indicates that in neurologically intact individuals where interlimb coordination and corticospinal tract are intact, the effect of leg cycling on cervico-lumbar coupling and corticospinal drive was not impacted significantly with the tSCS intensity used. This study demonstrates, for the first time, that tonic activation of spinal cord networks through multiple sites of tSCS provides a facilitation of both spinal reflex and corticospinal pathways. It remains vital to determine if combined tSCS can influence interlimb coupling after neural injury or disease when cervico-lumbar connectivity is impaired.


Author(s):  
Hannes Gatterer ◽  
Verena Menz ◽  
Martin Burtscher

In severe hypoxia, single-leg peak oxygen uptake (VO2peak) is reduced mainly due to the inability to increase cardiac output (CO). Whether moderate altitude allows CO to increase during single-leg cycling, thereby restoring VO2peak, has not been extensively investigated. Five healthy subjects performed an incremental, maximal, two-legged cycle ergometer test, and on separate days a maximal incremental one-leg cycling test in normoxia and in moderate hypoxia (fraction of inspired oxygen (FiO2) = 15%). Oxygen uptake, heart rate, blood pressure responses, power output, and CO (PhysioFlow) were measured during all tests. Moderate hypoxia lowered single-leg peak power output (154 ± 31 vs. 128 ± 26 watts, p = 0.03) and oxygen uptake (VO2) (36.8 ± 6.6 vs. 33.9 ± 6.9 mL/min/kg, p = 0.04), despite higher peak CO (16.83 ± 3.10 vs. 18.96 ± 3.59 L/min, p = 0.04) and systemic oxygen (O2) delivery (3.37 ± 0.84 vs. 3.47 ± 0.89 L/min, p = 0.04) in hypoxia compared to normoxia. Arterial–venous O2 difference (a–vDO2) was lower in hypoxia (137 ± 21 vs. 112 ± 19 mL/l, p = 0.03). The increases in peak CO from normoxia to hypoxia were negatively correlated with changes in mean arterial pressure (MABP) (p < 0.05). These preliminary data indicate that the rise in CO was not sufficient to prevent single-leg performance loss at moderate altitude and that enhanced baroreceptor activity might limit CO increases in acute hypoxia, likely by reducing sympathetic activation. Since the systemic O2 delivery was enhanced and the calculated a–vDO2 reduced in moderate hypoxia, a potential diffusion limitation cannot be excluded.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marcus Moberg ◽  
William Apró ◽  
Igor Cervenka ◽  
Björn Ekblom ◽  
Gerrit van Hall ◽  
...  

AbstractThis study examined acute molecular responses to concurrent exercise involving different muscles. Eight men participated in a randomized crossover-trial with two sessions, one where they performed interval cycling followed by upper body resistance exercise (ER-Arm), and one with upper body resistance exercise only (R-Arm). Biopsies were taken from the triceps prior to and immediately, 90- and 180-min following exercise. Immediately after resistance exercise, the elevation in S6K1 activity was smaller and the 4E-BP1:eIF4E interaction greater in ER-Arm, but this acute attenuation disappeared during recovery. The protein synthetic rate in triceps was greater following exercise than at rest, with no difference between trials. The level of PGC-1α1 mRNA increased to greater extent in ER-Arm than R-Arm after 90 min of recovery, as was PGC-1α4 mRNA after both 90 and 180 min. Levels of MuRF-1 mRNA was unchanged in R-Arm, but elevated during recovery in ER-Arm, whereas MAFbx mRNA levels increased slightly in both trials. RNA sequencing in a subgroup of subjects revealed 862 differently expressed genes with ER-Arm versus R-Arm during recovery. These findings suggest that leg cycling prior to arm resistance exercise causes systemic changes that potentiate induction of specific genes in the triceps, without compromising the anabolic response.


Author(s):  
Daniel A Keir ◽  
Catherine F. Notarius ◽  
Mark B. Badrov ◽  
Philip J Millar ◽  
John S Floras

During 1-leg cycling, contralateral muscle sympathetic nerve activity (MSNA) falls in healthy adults but increases in most with reduced ejection fraction heart failure (HFrEF). We hypothesized that their peak oxygen uptake (V̇O2peak) relates inversely to their MSNA response to exercise. Twenty-nine patients (6 women; 63±9 years; LVEF: 30±7%; V̇O2peak: 78±23 percent age-predicted (%V̇O2peak); mean±SD) and 21 healthy adults (9 women; 58±7 years; 115±29% V̇O2peak) performed 2-mins of mild- (“loadless”) and moderate-intensity (“loaded”) 1-leg cycling. Heart rate (HR), blood pressure (BP), contralateral leg MSNA and perceived exertion rate (RPE) were recorded. Resting MSNA burst frequency (BF) was higher (p<0.01) in HFrEF (51±11 vs 44±7 bursts∙min-1). Exercise HR, BP and RPE responses at either intensity were similar between groups. In minute two of “loadless” and “loaded” cycling, group mean BF fell from baseline values in controls (-5±6 and -7±7 bursts∙min-1, respectively) but rose in HFrEF (+5±7 and +5±10 bursts∙min-1). However, in 10 of the latter cohort, BF fell, similarly to controls. An inverse relationship between ΔBF from baseline to “loaded” cycling and %V̇O2peak was present in patients (r=-0.43, p<0.05), absent in controls (r=0.07, p=0.77). In HFrEF, ~18% of variance in %V̇O2peak can be attributed to the change in BF elicited by exercise. Novelty Bullets: • Unlike healthy individuals, in the majority of heart failure patients with reduced ejection fraction (HFrEF), 1-leg cycling increases muscle sympathetic nerve activity (MSNA). • In HFrEF, ~18% of age-predicted peak oxygen uptake (V̇O2peak) can be attributed to changes in MSNA elicited by low-intensity exercise. • This relationship is absent in healthy adults.


Sign in / Sign up

Export Citation Format

Share Document