muscle types
Recently Published Documents


TOTAL DOCUMENTS

209
(FIVE YEARS 27)

H-INDEX

37
(FIVE YEARS 2)

Author(s):  
Amy K. Loya ◽  
Sarah K. Van Houten ◽  
Bernadette M. Glasheen ◽  
Douglas M. Swank

A muscle undergoing cyclical contractions requires fast and efficient muscle activation and relaxation to generate high power with relatively low energetic cost. To enhance activation and increase force levels during shortening, some muscle types have evolved stretch activation (SA), a delayed increased in force following rapid muscle lengthening. SA's complementary phenomenon is shortening deactivation (SD), a delayed decrease in force following muscle shortening. SD increases muscle relaxation, which decreases resistance to subsequent muscle lengthening. While it might be just as important to cyclical power output, SD has received less investigation than SA. To enable mechanistic investigations into SD and quantitatively compare it to SA, we developed a protocol to elicit SA and SD from Drosophila and Lethocerus indirect flight muscles (IFM) and Drosophila jump muscle. When normalized to isometric tension, Drosophila IFM exhibited a 118% SD tension decrease, Lethocerus IFM dropped by 97%, and Drosophila jump muscle decreased by 37%. The same order was found for normalized SA tension: Drosophila IFM increased by 233%, Lethocerus IFM by 76%, and Drosophila jump muscle by only 11%. SD occurred slightly earlier than SA, relative to the respective length change, for both IFMs; but SD was exceedingly earlier than SA for jump muscle. Our results suggest SA and SD evolved to enable highly efficient IFM cyclical power generation and may be caused by the same mechanism. However, jump muscle SA and SD mechanisms are likely different, and may have evolved for a role other than to increase the power output of cyclical contractions.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Mayue Shi ◽  
Eric M. Yeatman

AbstractArtificial muscles are capable of generating actuation in microsystems with outstanding compliance. Recent years have witnessed a growing academic interest in artificial muscles and their application in many areas, such as soft robotics and biomedical devices. This paper aims to provide a comparative review of recent advances in artificial muscle based on various operating mechanisms. The advantages and limitations of each operating mechanism are analyzed and compared. According to the unique application requirements and electrical and mechanical properties of the muscle types, we suggest suitable artificial muscle mechanisms for specific microsystem applications. Finally, we discuss potential strategies for energy delivery, conversion, and storage to promote the energy autonomy of microrobotic systems at a system level.


2021 ◽  
pp. 112950
Author(s):  
Guillaume Junion ◽  
Krzysztof Jagla

Author(s):  
Christopher J. Morris ◽  
David C. Zawieja ◽  
James E. Moore

AbstractThe lymphatics maintain fluid balance by returning interstitial fluid to veins via contraction/compression of vessel segments with check valves. Disruption of lymphatic pumping can result in a condition called lymphedema with interstitial fluid accumulation. Lymphedema treatments are often ineffective, which is partially attributable to insufficient understanding of specialized lymphatic muscle lining the vessels. This muscle exhibits cardiac-like phasic contractions and smooth muscle-like tonic contractions to generate and regulate flow. To understand the relationship between this sub-cellular contractile machinery and organ-level pumping, we have developed a multiscale computational model of phasic and tonic contractions in lymphatic muscle and coupled it to a lymphangion pumping model. Our model uses the sliding filament model (Huxley in Prog Biophys Biophys Chem 7:255–318, 1957) and its adaptation for smooth muscle (Mijailovich in Biophys J 79(5):2667–2681, 2000). Multiple structural arrangements of contractile components and viscoelastic elements were trialed but only one provided physiologic results. We then coupled this model with our previous lumped parameter model of the lymphangion to relate results to experiments. We show that the model produces similar pressure, diameter, and flow tracings to experiments on rat mesenteric lymphatics. This model provides the first estimates of lymphatic muscle contraction energetics and the ability to assess the potential effects of sub-cellular level phenomena such as calcium oscillations on lymphangion outflow. The maximum efficiency value predicted (40%) is at the upper end of estimates for other muscle types. Spontaneous calcium oscillations during diastole were found to increase outflow up to approximately 50% in the range of frequencies and amplitudes tested.


2021 ◽  
Vol 22 (17) ◽  
pp. 9470
Author(s):  
Thomas Cahill ◽  
Henry Cope ◽  
Joseph J. Bass ◽  
Eliah G. Overbey ◽  
Rachel Gilbert ◽  
...  

Bioinformatics approaches have proven useful in understanding biological responses to spaceflight. Spaceflight experiments remain resource intensive and rare. One outstanding issue is how to maximize scientific output from a limited number of omics datasets from traditional animal models including nematodes, fruitfly, and rodents. The utility of omics data from invertebrate models in anticipating mammalian responses to spaceflight has not been fully explored. Hence, we performed comparative analyses of transcriptomes of soleus and extensor digitorum longus (EDL) in mice that underwent 37 days of spaceflight. Results indicate shared stress responses and altered circadian rhythm. EDL showed more robust growth signals and Pde2a downregulation, possibly underlying its resistance to atrophy versus soleus. Spaceflight and hindlimb unloading mice shared differential regulation of proliferation, circadian, and neuronal signaling. Shared gene regulation in muscles of humans on bedrest and space flown rodents suggest targets for mitigating muscle atrophy in space and on Earth. Spaceflight responses of C. elegans were more similar to EDL. Discrete life stages of D. melanogaster have distinct utility in anticipating EDL and soleus responses. In summary, spaceflight leads to shared and discrete molecular responses between muscle types and invertebrate models may augment mechanistic knowledge gained from rodent spaceflight and ground-based studies.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hamny Sofyan ◽  
Aryani Sismin Satyaningtijas ◽  
Cece Sumantri ◽  
Etih Sudarnika ◽  
Srihadi Agungpriyono

The Aceh cattle are local Indonesian beef cattle that are farmed in Aceh Province. This type of cattle is one of the sources of meat for the Aceh people. This study aims to analyze the quality of two primal cuts (longissimus lumborum and semitendinosus muscle) from Aceh cattle based on the muscle microstructure characteristics and MSTN gene expression. This study used a sample of longissimus lumborum and semitendinosus muscles from 18 adult male Aceh cattle with the age of 2–2.5 years and a BCS of 3.24. Muscle samples were obtained shortly after the cattle were slaughtered in slaughterhouses in Banda Aceh and Aceh Besar districts. Muscle microstructure analysis was performed using the HE, Masson’s trichrome, and immunohistochemistry staining methods, while the MSTN gene expression analysis was performed using the qPCR method. The analysis of the physical quality of meat includes pH, meat color, fat color, cooking loss, water holding capacity, and WBSF value. The results showed that the area of LL muscle fibers was smaller than that of ST with relatively the same diameter. Both muscles were dominated by fast fibers with a percentage of 82.37% (LL muscle) and 91.80% (ST muscle). The area and composition of the type of muscle fibers are the main factors that influence the tenderness of Aceh beef. A higher distribution of collagen was found in ST muscles than in LL muscles. MSTN gene expression in both muscle types was relatively the same. Aceh cattle have large muscle fibers and are dominated by fast fibers with a high percentage, resulting in a low level of the tenderness of Aceh beef. However, the level of tenderness of Aceh beef is still in accordance with the cooking preparation of original and favorite cuisine of Aceh people.


Author(s):  
Engin Yaralı

Some meat quality and sensory characteristics were determined of Kıvırcık (n=10), Eşme Kıvırcık (n=10), Karya (n=8) and Çine Çaparı (n=9) lambs in this research. Carcass divided into two parts along the spine and the three different type of muscle samples were taken from the between 8th and 9th vertebrae, 12th and 13th vertebrae and leg part of the left side of the carcasses. Drip loss, cooking loss and shear force values of these muscles were identified. Additionally, pH0, pH24, color, fatty acid composition and sensory properties were determined in M. Longissimus dorsi samples. When muscle types are evaluated separately were a statistically significant factor in terms of dripping and cooking loss and shear force. While the highest dripping loss were reported in M. Longissimus dorsi (3.72%), the highest cooking loss were reported in M. Longissimus thoracis (22.67%) and the highest shear force were reported in M. semitendinosus (4.38 kg). Genotype and muscle interaction were found to be highly significant for only cooking loss. The analysis results for fatty acids indicated that there was an important difference between Kıvırcık, Eşme Kıvırcık, Karya and Çine Çaparı on C10:0, C12:0, C14:0, C15:0, C16:0, tC18:1, CLA, tC18:3, C20:1, C22:0 fatty acids in the study. Genotypes showed no effect to SFA (Saturated fatty acids), MUFA (Monounsaturated fatty acids), PUFA (Polyunsaturated fatty acids) and P/S ratio parameters. Karya lambs performed higher for odor and tenderness, and Kıvırcık lambs showed a higher score for juiciness, flavor and total acceptability in sensory evaluation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Benjamin Bertin ◽  
Yoan Renaud ◽  
Teresa Jagla ◽  
Guillaume Lavergne ◽  
Cristiana Dondi ◽  
...  

AbstractA combinatorial code of identity transcription factors (iTFs) specifies the diversity of muscle types in Drosophila. We previously showed that two iTFs, Lms and Ap, play critical role in the identity of a subset of larval body wall muscles, the lateral transverse (LT) muscles. Intriguingly, a small portion of ap and lms mutants displays an increased number of LT muscles, a phenotype that recalls pathological split muscle fibers in human. However, genes acting downstream of Ap and Lms to prevent these aberrant muscle feature are not known. Here, we applied a cell type specific translational profiling (TRAP) to identify gene expression signatures underlying identity of muscle subsets including the LT muscles. We found that Gelsolin (Gel) and dCryAB, both encoding actin-interacting proteins, displayed LT muscle prevailing expression positively regulated by, the LT iTFs. Loss of dCryAB function resulted in LTs with irregular shape and occasional branched ends also observed in ap and lms mutant contexts. In contrast, enlarged and then split LTs with a greater number of myonuclei formed in Gel mutants while Gel gain of function resulted in unfused myoblasts, collectively indicating that Gel regulates LTs size and prevents splitting by limiting myoblast fusion. Thus, dCryAB and Gel act downstream of Lms and Ap and contribute to preventing LT muscle branching and splitting. Our findings offer first clues to still unknown mechanisms of pathological muscle splitting commonly detected in human dystrophic muscles and causing muscle weakness.


Author(s):  
Avery Lianne Penner ◽  
Victoria Waytt ◽  
Tanja Winter ◽  
Shan Leng ◽  
Todd Duhamel ◽  
...  

PUFA-derived bioactive lipid mediators called oxylipins have been shown to influence muscle growth, inflammation and repair in select muscles. Since individual oxylipins have varying effects and potencies, broad profiling in differing muscle types is required to further understand their overall effects. In addition, diet and sex are key determinants of oxylipin levels. Therefore, to provide comprehensive data on oxylipin profiles in rat soleus (SO), red gastrocnemius (RG), and white gastrocnemius (WG) muscles, female and male weanling Sprague-Dawley rats were provided control or experimental diets enriched in n-3 (ω-3) or n-6 (ω-6) PUFA for 6 weeks. Free oxylipin analysis by HPLC/MS/MS revealed that SO muscle had 25% more oxylipins and 4-13 times greater oxylipin mass than WG muscle. Dietary n-3 PUFA, α-linolenic acid, EPA, and DHA, each increased n-3 oxylipins derived directly from their precursors and several that were not direct precursors, while reducing arachidonic acid derived oxylipins. Dietary linoleic acid had few effects on oxylipins. Oxylipins with a sex effect were higher in females in SO and RG. Oxylipins generally reflected the effects of diet and sex on PUFA, but there were exceptions. These fundamental oxylipin profile data provide groundwork knowledge and context for future research on muscle oxylipin functions. Novelty • Rat soleus (SO) compared to red (RG) and white gastrocnemius (WG) muscles have a higher number and greater mass of oxylipins. • Oxylipins generally reflect diet effects on PUFA in all muscles, but there are notable exceptions. • Oxylipins in SO and RG are higher in females.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1282
Author(s):  
Damian Knecht ◽  
Kamil Duziński ◽  
Anna Jankowska-Mąkosa

The aim of this study was to determine the effect of 30 min bloom time and the type of muscle on pH and color parameters together with the possibility of estimating these measurements. The research material consisted of 270 samples from 6 muscle types: LD—Longissimus dorsi, LL—Longissimus lumborum, IL—Iliacus, SEM—Semimembranosus, CT—Cutaneous trunci, LTD—Latissimus dorsi. Measurements included pH and color of fresh pork at 0 min, and after 30 min bloom time. Bloom time influenced all analyzed parameters, although to a varying effect, depending on the muscle type. The lowest pH values were noted for dorsal-located muscles (LD, LL), then in the ham area (IL, SEM), and the highest values of the location on the side surface of the carcass (CT, LTD). The large increase in the proportion of L* and a* was observed for CT muscle (20–30%, the highest of all observed) and LTD (20–25%); for LD and LL the largest growth changes were observed for parameters b* (15–20%) and H* (20–30%). The lowest number of strong correlations was noted for LD and CT muscles, and the largest for SEM. A very good fit (R2 > 0.90) of regression equations was achieved in 7 cases. The presented results are an important contribution to the rapid and precise instrumental evaluation of pH and color.


Sign in / Sign up

Export Citation Format

Share Document