scholarly journals Corticothalamic projections deliver enhanced‐responses to medial geniculate body as a function of the temporal reliability of the stimulus

2021 ◽  
Author(s):  
Srinivasa P Kommajosyula ◽  
Edward L. Bartlett ◽  
Rui Cai ◽  
Lynne Ling ◽  
Donald Caspary
2021 ◽  
Author(s):  
Srinivasa P Kommajosyula ◽  
Edward L Bartlett ◽  
Rui Cai ◽  
Lynne Ling ◽  
Don M Caspary

Aging and challenging signal-in-noise conditions are known to engage use of cortical resources to help maintain speech understanding. Extensive corticothalamic projections are thought to provide attentional, mnemonic and cognitive-related inputs in support of sensory inferior colliculus (IC) inputs to the medial geniculate body (MGB). Here we show that a decrease in modulation depth, a temporally less distinct periodic acoustic signal, leads to a jittered ascending temporal code, changing MGB unit responses from adapting responses to responses showing repetition-enhancement, posited to aid identification of important communication and environmental sounds. Young-adult male Fischer Brown Norway rats, injected with the inhibitory opsin archaerhodopsin T (ArchT) into the primary auditory cortex (A1), were subsequently studied using optetrodes to record single-units in MGB. Decreasing the modulation depth of acoustic stimuli significantly increased repetition-enhancement. Repetition-enhancement was blocked by optical inactivation of corticothalamic terminals in MGB. These data support a role for corticothalamic projections in repetition-enhancement, implying that predictive anticipation could be used to improve neural representation of weakly modulated sounds.


2002 ◽  
Vol 445 (1) ◽  
pp. 78-96 ◽  
Author(s):  
Justin S. Cetas ◽  
Robin O. Price ◽  
David S. Velenovsky ◽  
Jennifer J. Crowe ◽  
Donal G. Sinex ◽  
...  

1981 ◽  
Vol 91 (2) ◽  
pp. 233-244 ◽  
Author(s):  
T. S. JUSS ◽  
J. B. WAKERLEY

Experiments were performed on anaesthetized lactating rats to investigate the effects of radiofrequency lesions of the mesencephalon on the milk-ejection reflex. In lesioned and control rats, intramammary pressure recordings were used to estimate oxytocin release (number and relative amplitude of the intermittent milk-ejection responses) during a 3-h suckling test with ten pups. Bilateral lesions (diameter 0·5–1·5 mm) of the lateral tegmentum (near the brachium of the inferior colliculus and medial geniculate body) seriously disrupted the milk-ejection reflex, reducing the number of rats ejecting milk (two out of ten v. all 12 controls, P<0·001) and the amount of oxytocin they released (1·35±0·35 (s.e.m.) v. 15·52±2·19 mu. for controls, P<0·05). Unilateral lesions of the lateral tegmentum also impaired milk ejection and, if the suckling stimulus was restricted only to the contralateral nipples, oxytocin release was virtually abolished. Bilateral lesions placed more medially in the intermediate tegmentum were far less disruptive (eight out of nine rats ejected milk), though the amount of oxytocin released in this group (8·64±1·88 mu.) was still significantly (P<0·05) lower than controls. All rats with lesions of the central grey (nine) or ventral tegmentum (eight) displayed reflex milk ejection, as did those with multiple lesions of the tectum, central grey and ventral tegmentum (seven); in these three groups the amounts of oxytocin released (13·88±2·68, 13·10±1·90 and 11·04±1·95 mu. respectively) did not differ significantly from controls. Damage to the ventral tegmentum produced an irregular pattern of milk ejection characterized by occasional abnormally short (<2 min) milk-ejection intervals, though the overall number of responses in 3 h was less than that of controls (20·83±1·82 v. 14·50±1·30 mu., P<0·05). In conclusion, these results delineate two mesencephalic areas of particular importance in the milk-ejection reflex: (a) the lateral tegmentum, which appears to be concerned with transmission of the suckling stimulus from the contralateral nipples and is indispensable for oxytocin release, and (b) the ventral tegmentum which, although not an essential component of the reflex, may contribute to the timing of the intermittent milk-ejection responses.


2000 ◽  
Vol 32-33 ◽  
pp. 833-841 ◽  
Author(s):  
Satoru Inoue ◽  
Manabu Kimyou ◽  
Yoshiki Kashimori ◽  
Osamu Hoshino ◽  
Takeshi Kambara

2016 ◽  
Vol 332 ◽  
pp. 104-112 ◽  
Author(s):  
Xin-Xing Wang ◽  
Yan Jin ◽  
Bin Luo ◽  
Jing-Wu Sun ◽  
Jinsheng Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document