scholarly journals Neural mechanisms of reflex facilitation and inhibition of gastric motility to stimulation of various skin areas in rats.

1979 ◽  
Vol 294 (1) ◽  
pp. 407-418 ◽  
Author(s):  
H Kametani ◽  
A Sato ◽  
Y Sato ◽  
A Simpson
2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Hao Wang ◽  
Guo-ming Shen ◽  
Wei-jian Liu ◽  
Shun Huang ◽  
Meng-ting Zhang

A large number of studies have been conducted to explore the mechanism of Back-Shu and Front-Mu points. While several lines of evidence addressed the acupuncture information of Shu acupoints and Mu acupoints gathering in the spinal cord, whether the convergence is extended to the high centre still remains unclear. The study selected gastric Mu points (RN12) and gastric Shu points (BL21) regulating gastric motility and its central neural mechanisms as the breakthrough point, using the technique of immunochemistry, nuclei lesion, electrophysiology, and nerve transection. Here, we report that gastric motility regulation of gastric Shu and Mu acupoints and their synergistic effect and the signals induced by electroacupuncture (EA) stimulation of acupoints RN12 and RN12 gather in the dorsal vagal complex (DVC), increasing the levels of gastrointestinal hormones in the DVC to regulate gastric motility through the vagus. In sum, our data demonstrate an important role of DVC and vagus in the regulation of gastric motility by EA at gastric Shu and Mu points.


1999 ◽  
Vol 26 (3) ◽  
pp. 263-268 ◽  
Author(s):  
Byung Rim Park ◽  
Min Sun Kim ◽  
Moon Young Lee ◽  
Yong Ki Kim ◽  
Suck Chei Choi ◽  
...  

1990 ◽  
Vol 64 (4) ◽  
pp. 1134-1148 ◽  
Author(s):  
S. N. Currie ◽  
P. S. Stein

1. We demonstrated multisecond increases in the excitability of the rostral-scratch reflex in the turtle by electrically stimulating the shell at sites within the rostral-scratch receptive field. To examine the cellular mechanisms for these multisecond increases in scratch excitability, we recorded from single cutaneous afferents and sensory interneurons that responded to stimulation of the shell within the rostral-scratch receptive field. A single segment of the midbody spinal cord (D4, the 4th postcervical segment) was isolated in situ by transecting the spinal cord at the segment's anterior and posterior borders. The isolated segment was left attached to its peripheral nerve that innervates part of the rostral-scratch receptive field. A microsuction electrode (4-5 microns ID) was used to record extracellularly from the descending axons of cutaneous afferents and interneurons in the spinal white matter at the posterior end of the D4 segment. 2. The turtle shell is innervated by slowly and rapidly adapting cutaneous afferents. All cutaneous afferents responded to a single electrical stimulus to the shell with a single action potential. Maintained mechanical stimulation applied to the receptive field of some slowly adapting afferents produced several seconds of afterdischarge at stimulus offset. We refer to the cutaneous afferent afterdischarge caused by mechanical stimulation of the shell as "peripheral afterdischarge." 3. Within the D4 spinal segment there were some interneurons that responded to a brief mechanical stimulus within their receptive fields on the shell with short afterdischarge and others that responded with long afterdischarge. Short-afterdischarge interneurons responded to a single electrical pulse to a site in their receptive fields either with a brief train of action potentials or with a single action potential. Long-afterdischarge interneurons responded to a single electrical shell stimulus with up to 30 s of afterdischarge. Long-afterdischarge interneurons also exhibited strong temporal summation in response to a pair of electrical shell stimuli delivered up to several seconds apart. Because all cutaneous afferents responded to an electrical shell stimulus with a single action potential, we conclude that electrically evoked afterdischarge in interneurons was produced by neural mechanisms in the spinal cord; we refer to this type of afterdischarge as "central afterdischarge." 4. These results demonstrate that neural mechanisms for long-lasting excitability changes in response to cutaneous stimulation reside in a single segment of the spinal cord. Cutaneous interneurons with long afterdischarge may serve as cellular loci for multise


2007 ◽  
Vol 292 (1) ◽  
pp. R291-R307 ◽  
Author(s):  
Maureen T. Cruz ◽  
Erin C. Murphy ◽  
Niaz Sahibzada ◽  
Joseph G. Verbalis ◽  
Richard A. Gillis

Our primary purpose was to characterize vagal pathways controlling gastric motility by microinjecting l-glutamate into the dorsal motor nucleus of the vagus (DMV) in the rat. An intragastric balloon was used to monitor motility. In 39 out of 43 experiments, microinjection of l-glutamate into different areas of the DMV rostral to calamus scriptorius (CS) resulted in vagally mediated excitatory effects on motility. We observed little evidence for inhibitory effects, even with intravenous atropine or with activation of gastric muscle muscarinic receptors by intravenous bethanechol. Inhibition of nitric oxide synthase with Nω-nitro-l-arginine methyl ester (l-NAME) HCl did not augment DMV-evoked excitatory effects on gastric motility. Microinjection of l-glutamate into the DMV caudal to CS produced vagally mediated gastric inhibition that was resistant to l-NAME. l-Glutamate microinjected into the medial subnucleus of the tractus solitarius (mNTS) also produced vagally mediated inhibition of gastric motility. Motility responses evoked from the DMV were always blocked by ipsilateral vagotomy, while responses evoked from the mNTS required bilateral vagotomy to be blocked. Microinjection of oxytocin into the DMV inhibited gastric motility, but the effect was never blocked by ipsilateral vagotomy, suggesting that the effect may have been due to diffusion of oxytocin to the mNTS. Microinjection of substance P and N-methyl-d-aspartate into the DMV also produced inhibitory effects attributable to excitation of nearby mNTS neurons. Our results do not support previous studies indicating parallel vagal excitatory and inhibitory pathways originating in the DMV rostral to CS. Our results do support previous findings of vagal inhibitory pathways originating in the DMV caudal to CS.


1993 ◽  
Vol 264 (2) ◽  
pp. G195-G201 ◽  
Author(s):  
R. Fraser ◽  
M. Horowitz ◽  
A. Maddox ◽  
J. Dent

There is little information about the effects of cisapride on human antropyloroduodenal motility, despite its documented efficacy for increasing the rate of gastric emptying in patients with gastroparesis. Cisapride has been reported to have little effect on gastric emptying in normal subjects. Antral, pyloric, and duodenal pressures were recorded simultaneously with gastric emptying in 20 healthy volunteers. Thirty minutes after the solid component of the meal had started to empty from the stomach, each subject received either 10 mg cisapride i.v. (11 subjects) or intravenous saline (9 subjects). Intravenous saline had no effect on either motility or gastric emptying. In contrast, cisapride administration was associated with a dual effect on motility, with initial suppression of antral pressure waves (P < 0.05) followed by stimulation of associated antropyloroduodenal pressure waves (P < 0.01). Gastric emptying slowed in the first 30 min after cisapride (P < 0.05), and this was followed by more rapid gastric emptying (P < 0.01). The amount of the meal emptied in the 60 min after cisapride correlated with the number of associated antroduodenal pressure waves (r = 0.75, P < 0.001) but not with the number of antral waves (r = 0.42, NS). These results indicate that cisapride in a dose of 10 mg i.v. has dual effects on gastric emptying and gastric motility. The stimulation of associated antral pressure waves is a plausible mechanism for the efficacy of cisapride in the treatment of gastroparesis.


1985 ◽  
Vol 249 (4) ◽  
pp. F542-F545 ◽  
Author(s):  
R. Vandongen ◽  
H. McGowan ◽  
H. Anderson ◽  
A. Barden

The contribution of the renal nerves in maintaining blood pressure and modulating renal prostanoid synthesis was examined in established (less than 8 wk in duration) one-kidney, one-clip (1K,1C) hypertension in the rat. Systolic blood pressure was measured for 7 days after renal denervation, at which time the renal artery clip was removed. Twenty-four-hour urinary excretion of PGE2 and 6-keto-PGF1 alpha (stable degradation product of PGI2) was determined before and after denervation and unclipping. Compared with sham-denervated rats, denervation (n = 15) resulted in a small but significant fall in blood pressure (from 216 +/- 4 to 182 +/- 4 mmHg after 48 h) and an increase in urinary 6-keto-PGF1 alpha (from 31 +/- 4 to 43 +/- 5 ng/24 h after 24 h). There was no change in PGE2 excretion. Seven days after surgery, blood pressures were similar in denervated (202 +/- 4 mmHg) and sham-denervated (211 +/- 5 mmHg) rats and fell to a similar extent 24 h after unclipping (142 +/- 3 and 147 +/- 4 mmHg, respectively). Urinary 6-keto-PGF1 alpha increased from 25 +/- 5 to 74 +/- 11 in denervated and 21 +/- 2 to 72 +/- 9 ng/24 h in sham-denervated rats in the 24 h after unclipping. PGE2 excretion increased approximately twofold over this period. These findings indicate that the renal nerves have only a minor role in established hypertension in the 1K,1C rat and that the reversal of hypertension and stimulation of renal prostanoid synthesis following unclipping is not dependent on neural mechanisms.


2004 ◽  
Vol 39 (12) ◽  
pp. 1209-1214 ◽  
Author(s):  
H. Fukuda ◽  
Y. Mizuta ◽  
H. Isomoto ◽  
F. Takeshima ◽  
K. Ohnita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document