scholarly journals The actions of gamma-aminobutyric acid, glycine and their antagonists upon horizontal cells of the Xenopus retina.

1984 ◽  
Vol 353 (1) ◽  
pp. 249-264 ◽  
Author(s):  
S Stone ◽  
P Witkovsky
1984 ◽  
Vol 99 (2) ◽  
pp. 686-691 ◽  
Author(s):  
R E Anderson ◽  
J G Hollyfield

The absorption of light by photoreceptor cells leads to an increased incorporation of [2-3H]inositol into phosphoinositides of horizontal cells in the retina of Xenopus laevis in vitro. We have identified several retinal neurotransmitters that are involved in regulating this response. Incubation with glycine, the neurotransmitter of an interplexiform cell that has direct synaptic input onto horizontal cells, abolishes the light effect. This inhibition is reversed by preincubation with strychnine. Acetylcholine added to the culture medium enhances the incorporation of [2-3H]inositol into phosphoinositides in horizontal cells when retinas are incubated in the dark. This effect is inhibited by preincubation with atropine. However, atropine alone does not inhibit the light-enhanced incorporation of [2-3H]inositol into phosphoinositides in the retina. gamma-Aminobutyric acid, the neurotransmitter of retinal horizontal cells in X. laevis, as well as dopamine and norepinephrine, have no effect on the incorporation of [2-3H]inositol into phosphoinositides. These studies demonstrate that the light-enhanced incorporation of [2-3H]inositol into phosphoinositides of retinal horizontal cells is regulated by specific neurotransmitters, and that there are probably several synaptic inputs into horizontal cells which control this process.


1995 ◽  
Vol 73 (2) ◽  
pp. 916-919 ◽  
Author(s):  
C. J. Dong ◽  
F. S. Werblin

1. We studied the effect of zinc on the gamma-aminobutyric acid-C (GABAC) receptor in acutely isolated catfish cone horizontal cells using the whole cell patch-clamp technique. 2. GABA activates the GABAC receptor with a half-activation concentration (EC50) of 2.99 microM. The Hill coefficient is 1.32. Desensitization of the receptor is evident when GABA concentration is > 3 microM. 3. Zinc downmodulates the GABAc receptor current, elicited by 30 microM GABA, with a half-inhibition concentration (IC50) of 8.20 microM. 4. The inhibition of zinc is both competitive and noncompetitive. In the presence of 10 microM zinc, the maximum GABA response was reduced to approximately 60 percent of control and the EC50 increased to 17.32 microM, whereas the Hill coefficient (1.39) was not significantly altered. 5. The steady-state block by zinc is virtually voltage independent. 6. These results suggest that the GABAC receptor of horizontal cells can be modulated by endogenous zinc found in photoreceptors.


1964 ◽  
Vol 11 (01) ◽  
pp. 064-074 ◽  
Author(s):  
Robert H Wagner ◽  
William D McLester ◽  
Marion Smith ◽  
K. M Brinkhous

Summary1. The use of several amino acids, glycine, alpha-aminobutyric acid, alanine, beta-alanine, and gamma-aminobutyric acid, as plasma protein precipitants is described.2. A specific procedure is detailed for the preparation of canine antihemophilic factor (AHF, Factor VIII) in which glycine, beta-alanine, and gammaaminobutyric acid serve as the protein precipitants.3. Preliminary results are reported for the precipitation of bovine and human AHF with amino acids.


Sign in / Sign up

Export Citation Format

Share Document