Zinc downmodulates thf GABAc receptor current in cone horizontal cells acutely isolated from the catfish retina

1995 ◽  
Vol 73 (2) ◽  
pp. 916-919 ◽  
Author(s):  
C. J. Dong ◽  
F. S. Werblin

1. We studied the effect of zinc on the gamma-aminobutyric acid-C (GABAC) receptor in acutely isolated catfish cone horizontal cells using the whole cell patch-clamp technique. 2. GABA activates the GABAC receptor with a half-activation concentration (EC50) of 2.99 microM. The Hill coefficient is 1.32. Desensitization of the receptor is evident when GABA concentration is > 3 microM. 3. Zinc downmodulates the GABAc receptor current, elicited by 30 microM GABA, with a half-inhibition concentration (IC50) of 8.20 microM. 4. The inhibition of zinc is both competitive and noncompetitive. In the presence of 10 microM zinc, the maximum GABA response was reduced to approximately 60 percent of control and the EC50 increased to 17.32 microM, whereas the Hill coefficient (1.39) was not significantly altered. 5. The steady-state block by zinc is virtually voltage independent. 6. These results suggest that the GABAC receptor of horizontal cells can be modulated by endogenous zinc found in photoreceptors.

1994 ◽  
Vol 71 (3) ◽  
pp. 1258-1260 ◽  
Author(s):  
C. J. Dong ◽  
F. S. Werblin

1. Dopamine modulation of gamma-aminobutyric acid (GABA)-elicited currents was studied in cone horizontal cells acutely isolated from the catfish retina using the whole-cell patch-clamp technique. 2. GABA puffs elicited both a GABAC current and a transporter current. Dopamine (10 microM) in the bath selectively reduced the GABAC receptor current without affecting the GABA transporter current. 3. This effect of dopamine was mimicked by the D1 agonist SKF38393 (25 microM) and an adenylyl cyclase activator forskolin (20 microM) but blocked by the dopamine antagonist haloperidol (30 microM). 4. These findings provide the first evidence for dopamine modulation of GABA receptor function in the vertebrate nervous system. In the intact retina, dopamine may modulate GABA-mediated chemical coupling and autofeedback in horizontal cells.


1994 ◽  
Vol 191 (1) ◽  
pp. 167-193
Author(s):  
C Jackel ◽  
W Krenz ◽  
F Nagy

Neurones were dissociated from thoracic ganglia of embryonic and adult lobsters and kept in primary culture. When gamma-aminobutyric acid (GABA) was applied by pressure ejection, depolarizing or hyperpolarizing responses were produced, depending on the membrane potential. They were accompanied by an increase in membrane conductance. When they were present, action potential firing was inhibited. The pharmacological profile and ionic mechanism of GABA-evoked current were investigated under voltage-clamp with the whole-cell patch-clamp technique. The reversal potential of GABA-evoked current depended on the intracellular and extracellular Cl- concentration but not on extracellular Na+ and K+. Blockade of Ca2+ channels by Mn2+ was also without effect. The GABA-evoked current was mimicked by application of the GABAA agonists muscimol and isoguvacine with an order of potency muscimol>GABA>isoguvacine. cis-4-aminocrotonic acid (CACA), a folded and conformationally restricted GABA analogue, supposed to be diagnostic for the vertebrate GABAC receptor, also induced a bicuculline-resistant chloride current, although with a potency about 10 times lower than that of GABA. The GABA-evoked current was largely blocked by picrotoxin, but was insensitive to the GABAA antagonists bicuculline, bicuculline methiodide and SR 95531 at concentrations of up to 100 µmol l-1. Diazepam and phenobarbital did not exert modulatory effects. The GABAB antagonist phaclophen did not affect the GABA-induced current, while the GABAB agonists baclophen and 3-aminopropylphosphonic acid (3-APA) never evoked any response. Our results suggest that lobster thoracic neurones in culture express a chloride-conducting GABA-receptor channel which conforms to neither the GABAA nor the GABAB types of vertebrates but shows a pharmacology close to that of the novel GABAC receptor described in the vertebrate retina.


1991 ◽  
Vol 66 (6) ◽  
pp. 2014-2021 ◽  
Author(s):  
M. Wakamori ◽  
Y. Ikemoto ◽  
N. Akaike

1. Effects of two volatile anesthetics [halothane (Hal) and enflurane (Enf)] and a volatile convulsant [hexafluorodiethyl ether (HFE)] on amino acid-induced membrane currents in neurons dissociated from the nucleus tractus solitarius of the rat were examined. The dissociated neurons were voltage clamped in the whole-cell mode of the patch-clamp technique. All drugs were applied with a microperfusion system, termed the "Y-tube" method. 2. The glutamate (Glu)-induced excitatory response was slightly reduced by both the anesthetics. The responses to three agonists at Glu receptor were depressed by Hal (10(-3) M) in the rank order of quisqualate greater than N-methyl-D-aspartate greater than kainate. HFE slightly increased the Glu response at a high concentration of 2 x 10(-3) M. 3. The gamma-aminobutyric acid (GABA)-induced chloride current (ICl) was enhanced by both anesthetics. The dissociation constant (Kd) for the enhancement was 2.3 x 10(-4) M for Hal and 2.1 x 10(-4) M for Enf, and the Hill coefficient was 1.6 for Hal and 1.5 for Enf. HFE depressed the GABA response with a Kd of 8.7 x 10(-5) M and a Hill coefficient of 0.84. 4. Hal (10(-3) M) and Enf (10(-3) M) decreased the Kd of the GABA concentration-response curve from 3.5 x 10(-6) to 10(-6) and 1.9 x 10(-6) M, respectively, without changing the maximum response or the Hill coefficient (1.5). In the presence of HFE (10(-4) M), the Kd was increased to 1.4 x 10(-5) M and the Hill coefficient was slightly changed to 1.2.(ABSTRACT TRUNCATED AT 250 WORDS)


Acta Naturae ◽  
2015 ◽  
Vol 7 (2) ◽  
pp. 95-101 ◽  
Author(s):  
E. I. Nagaeva ◽  
N. N. Potapieva ◽  
D. B. Tikhonov

Acid-sensing ion channels (ASICs) are widely distributed in both the central and peripheral nervous systems of vertebrates. The pharmacology of these receptors remains poorly investigated, while the search for new ASIC modulators is very important. Recently, we found that some monoamines, which are blockers of NMDA receptors, inhibit and/or potentiate acid-sensing ion channels, depending on the subunit composition of the channels. The effect of 9-aminoacridine, IEM-1921, IEM-2117, and memantine both on native receptors and on recombinant ASIC1a, ASIC2a, and ASIC3 homomers was studied. In the present study, we have investigated the effect of these four compounds on homomeric ASIC1b channels. Experiments were performed on recombinant receptors expressed in CHO cells using the whole-cell patch clamp technique. Only two compounds, 9-aminoacridine and memantine, inhibited ASIC1b channels. IEM-1921 and IEM-2117 were inactive even at a 1000 M concentration. In most aspects, the effect of the compounds on ASIC1b was similar to their effect on ASIC1a. The distinguishing feature of homomeric ASIC1b channels is a steep activation-dependence, indicating cooperative activation by protons. In our experiments, the curve of the concentration dependence of ASIC1b inhibition by 9-aminoacridine also had a slope (Hill coefficient) of 3.8, unlike ASIC1a homomers, for which the Hill coefficient was close to 1. This finding indicates that the inhibitory effect of 9-aminoacridine is associated with changes in the activation properties of acid-sensing ion channels.


1994 ◽  
Vol 72 (4) ◽  
pp. 1530-1537 ◽  
Author(s):  
Y. Abe ◽  
K. Furukawa ◽  
Y. Itoyama ◽  
N. Akaike

1. We investigated the glycine-induced response in ventromedial hypothalamic (VMH) neurons freshly dissociated from 8- to 12-day-old rats using the nystatin and gramicidin perforated patch recording modes. The nystatin-formed pores in the plasma membrane are permeable for both monovalent cations and anions, whereas those formed by gramicidin are permeable only to monovalent cations. Therefore, when the patch-pipette contains 150 mM Cl- and gramicidin, the physiological intracellular Cl- concentration ([Cl-]i) is undisturbed in the cell-attached condition of the pipette. 2. At holding potentials of -40 to -60 mV, glycine induced inward currents and outward currents in the nystatin and gramicidin perforated patch recording modes, respectively. The values of the half-maximum effective concentration (EC50) and the Hill coefficient in the concentration-response relationships of the glycine responses were 2.9 x 10(-5) M, 1.1, and 4.2 x 10(-5) M, 1.4, respectively. These values were quite similar in both recording modes. 3. The reversal potentials of the glycine responses (EGly) were -1.5 mV in the nystatin perforated patch recording and -75.0 to -24.8 mV in the gramicidin perforated patch recording. 4. Strychnine (3 x 10(-8) M) inhibited the glycine-induced outward currents in a competitive manner and the half-inhibition concentration (IC50) of strychnine on the 10(-4) M glycine-induced response was 1.9 x 10(-8) M. 5. The physiological [Cl-]i in the VMH neurons calculated from the EGly obtained by the gramicidin perforated patch mode ranged from 6.0 to 43.8 mM (n = 28).


2000 ◽  
Vol 84 (5) ◽  
pp. 2277-2283 ◽  
Author(s):  
C. Bruehl ◽  
W. J. Wadman ◽  
O. W. Witte

High-voltage–activated calcium currents (HVA) of CA1 neurons are prominently attenuated following a switch from HEPES-buffered solution to one buffered with CO2/HCO3 −. In the present study we investigated whether bicarbonate ions or the dissolved CO2 induce this alteration in current characteristic. The study was carried out on freshly isolated CA1 neurons using the whole cell patch-clamp technique. Maximal calcium conductance and the mean peak amplitude of the currents showed a concentration-dependent decrease when cells were consecutively bathed in solutions containing increasing amounts of bicarbonate and CO2. This decrease is best described by the Hill equation, yielding a maximal attenuation of 69%, a half-maximal concentration (EC50) of 7.4 mM HCO3 −, and a Hill coefficient of 1.8. In parallel, the potentials of half-maximal activation ( V h,a) and inactivation ( V h,i) were linearly shifted in hyperpolarizing direction with a maximal shift, in the 10% CO2/37 mM HCO3 − containing solution of 10 ± 1 mV for V h,a( n = 23) and 17 ± 1.4 mV for V h,i ( n = 18). When currents were evoked in solutions containing equal concentrations of bicarbonate but different amounts of CO2, only nonsignificant changes were observed, while marked alterations of the currents were induced when bicarbonate was changed and CO2 held stable. The experiments suggest that bicarbonate is the modulating agent and not CO2. This bicarbonate-induced modulation may be of critical relevance for the excitation level of the CNS under pathological situation with altered concentration of this ion, such as hyperventilation and metabolic acidosis.


1984 ◽  
Vol 99 (2) ◽  
pp. 686-691 ◽  
Author(s):  
R E Anderson ◽  
J G Hollyfield

The absorption of light by photoreceptor cells leads to an increased incorporation of [2-3H]inositol into phosphoinositides of horizontal cells in the retina of Xenopus laevis in vitro. We have identified several retinal neurotransmitters that are involved in regulating this response. Incubation with glycine, the neurotransmitter of an interplexiform cell that has direct synaptic input onto horizontal cells, abolishes the light effect. This inhibition is reversed by preincubation with strychnine. Acetylcholine added to the culture medium enhances the incorporation of [2-3H]inositol into phosphoinositides in horizontal cells when retinas are incubated in the dark. This effect is inhibited by preincubation with atropine. However, atropine alone does not inhibit the light-enhanced incorporation of [2-3H]inositol into phosphoinositides in the retina. gamma-Aminobutyric acid, the neurotransmitter of retinal horizontal cells in X. laevis, as well as dopamine and norepinephrine, have no effect on the incorporation of [2-3H]inositol into phosphoinositides. These studies demonstrate that the light-enhanced incorporation of [2-3H]inositol into phosphoinositides of retinal horizontal cells is regulated by specific neurotransmitters, and that there are probably several synaptic inputs into horizontal cells which control this process.


1992 ◽  
Vol 67 (5) ◽  
pp. 1367-1374 ◽  
Author(s):  
S. Itabashi ◽  
K. Aibara ◽  
H. Sasaki ◽  
N. Akaike

1. The pharmacologic properties of gamma-aminobutyric acid (GABA)-induced Cl- current (ICl) were studied in the paratracheal ganglion cells freshly dissociated from 7- to 10-day-old rat trachea in a whole-cell recording mode by the use of a conventional patch-clamp technique. 2. GABA- and muscimol-induced currents increased sigmoidally in a concentration-dependent manner, and both currents reversed at approximately -3 mV, which was close to the Cl- equilibrium potential (ECl). 3. Strychnine (STR) at low concentration and bicuculline (BIC) inhibited GABA response competitively, whereas STR at the higher concentrations, benzylpenicillin (PCG), or picrotoxin (PTX) inhibited noncompetitively. Inhibition of GABA response by PCG but not other antagonists was voltage dependent, indicating that PCG acts as a Cl- channel blocker. 4. The concentration-response curve of pentobarbital sodium (PB)-induced ICl was bell shaped. At concentrations higher than 10(-3) M, both the peak and plateau currents decreased, and a transient "hump" current appeared immediately after washing out PB. In the presence of PB, the concentration-response curve of GABA shifted toward left without changing the maximum response. 5. Although diazepam (DZP) at concentration used did not induce a response, it potentiated the GABA response in a concentration-dependent manner between 10(-8) and 10(-6) M. DZP also caused a parallel shift toward left in the concentration-response curve of GABA. 6. PB or DZP further enhanced the GABA response in the presence of the other agent. 7. It is concluded that the properties of GABAA receptors in the paratracheal ganglion cells are essentially similar to those reported in other preparations.


1995 ◽  
Vol 73 (5) ◽  
pp. 2099-2106 ◽  
Author(s):  
R. A. Wang ◽  
G. Cheng ◽  
M. Kolaj ◽  
M. Randic

1. Here we report that in acutely isolated rat spinal dorsal horn neurons, the gamma-aminobutyric acid-A (GABAA) receptor can be regulated by calcium/calmodulin-dependent protein kinase II (CaM-KII). Intracellularly applied, the alpha-subunit of CaM-KII enhanced GABAA-receptor-activated current recorded with the use of the whole cell patch-clamp technique. This effect was associated with reduced desensitization of GABA responses. 2. GABA-induced currents are also potentiated by calyculin A, an inhibitor of protein phosphatases 1 and 2A. 3. Conventional intracellular recordings were made from hippocampal CA1 neurons in slices to determine the effect of intracellular application of CaM-KII on inhibitory synaptic potentials evoked by electrical stimulation of the stratum oriens/alveus. The inhibitory synaptic potential was enhanced by CaM-KII; this mechanism may contribute to long-term enhancement of inhibitory synaptic transmission and may also play a role in other forms of plasticity in the mammalian brain.


2003 ◽  
Vol 285 (6) ◽  
pp. L1203-L1212 ◽  
Author(s):  
Xiao Wen Fu ◽  
Colin A. Nurse ◽  
Suzanne M. Farragher ◽  
Ernest Cutz

Pulmonary neuroepithelial bodies (NEB) are presumed airway chemoreceptors involved in respiratory control, especially in the neonate. Nicotine is known to affect both lung development and control of breathing. We report expression of functional nicotinic acetylcholine receptors (nAChR) in NEB cells of neonatal hamster lung using a combination of morphological and electrophysiological techniques. Nonisotopic in situ hybridization method was used to localize mRNA for the β2-subunit of nAChR in NEB cells. Double-label immunofluorescence confirmed expression of α4-, α7-, and β2-subunits of nAChR in NEB cells. The electrophysiological characteristics of nAChR in NEB cells were studied using the whole cell patch-clamp technique on fresh lung slices. Application of nicotine (∼0.1-100 μM) evoked inward currents that were concentration dependent (EC50 = 3.8 μM; Hill coefficient = 1.1). ACh (100 μM) and nicotine (50 μM) produced two types of currents. In most NEB cells, nicotine-induced currents had a single desensitizing component that was blocked by mecamylamine (50 μM) and dihydro-β-erythroidine (50 μM). In some NEB cells, nicotine-induced current had two components, with fast- and slow-desensitizing kinetics. The fast component was selectively blocked by methyllcaconitine (MLA, 10 nM), whereas both components were inhibited by mecamylamine. Choline (0.5 mM) also induced an inward current that was abolished by 10 nM MLA. These studies suggest that NEB cells in neonatal hamster lung express functional heteromeric α3β2, α4β2, and α7 nAChR and that cholinergic mechanisms could modulate NEB chemoreceptor function under normal and pathological conditions.


Sign in / Sign up

Export Citation Format

Share Document