glutamate transmission
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 35)

H-INDEX

38
(FIVE YEARS 3)

2021 ◽  
Vol 13 ◽  
Author(s):  
Marie-Charlotte Allichon ◽  
Vanesa Ortiz ◽  
Paula Pousinha ◽  
Andry Andrianarivelo ◽  
Anna Petitbon ◽  
...  

Drug addiction is defined as a compulsive pattern of drug-seeking- and taking- behavior, with recurrent episodes of abstinence and relapse, and a loss of control despite negative consequences. Addictive drugs promote reinforcement by increasing dopamine in the mesocorticolimbic system, which alters excitatory glutamate transmission within the reward circuitry, thereby hijacking reward processing. Within the reward circuitry, the striatum is a key target structure of drugs of abuse since it is at the crossroad of converging glutamate inputs from limbic, thalamic and cortical regions, encoding components of drug-associated stimuli and environment, and dopamine that mediates reward prediction error and incentive values. These signals are integrated by medium-sized spiny neurons (MSN), which receive glutamate and dopamine axons converging onto their dendritic spines. MSN primarily form two mostly distinct populations based on the expression of either DA-D1 (D1R) or DA-D2 (D2R) receptors. While a classical view is that the two MSN populations act in parallel, playing antagonistic functional roles, the picture seems much more complex. Herein, we review recent studies, based on the use of cell-type-specific manipulations, demonstrating that dopamine differentially modulates dendritic spine density and synapse formation, as well as glutamate transmission, at specific inputs projecting onto D1R-MSN and D2R-MSN to shape persistent pathological behavioral in response to drugs of abuse. We also discuss the identification of distinct molecular events underlying the detrimental interplay between dopamine and glutamate signaling in D1R-MSN and D2R-MSN and highlight the relevance of such cell-type-specific molecular studies for the development of innovative strategies with potential therapeutic value for addiction. Because drug addiction is highly prevalent in patients with other psychiatric disorders when compared to the general population, we last discuss the hypothesis that shared cellular and molecular adaptations within common circuits could explain the co-occurrence of addiction and depression. We will therefore conclude this review by examining how the nucleus accumbens (NAc) could constitute a key interface between addiction and depression.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (10) ◽  
pp. e1009871
Author(s):  
Jiwon Jeong ◽  
Jongbin Lee ◽  
Ji-hyung Kim ◽  
Chunghun Lim

Kohlschütter-Tönz syndrome (KTS) manifests as neurological dysfunctions, including early-onset seizures. Mutations in the citrate transporter SLC13A5 are associated with KTS, yet their underlying mechanisms remain elusive. Here, we report that a Drosophila SLC13A5 homolog, I’m not dead yet (Indy), constitutes a neurometabolic pathway that suppresses seizure. Loss of Indy function in glutamatergic neurons caused “bang-induced” seizure-like behaviors. In fact, glutamate biosynthesis from the citric acid cycle was limiting in Indy mutants for seizure-suppressing glutamate transmission. Oral administration of the rate-limiting α-ketoglutarate in the metabolic pathway rescued low glutamate levels in Indy mutants and ameliorated their seizure-like behaviors. This metabolic control of the seizure susceptibility was mapped to a pair of glutamatergic neurons, reversible by optogenetic controls of their activity, and further relayed onto fan-shaped body neurons via the ionotropic glutamate receptors. Accordingly, our findings reveal a micro-circuit that links neural metabolism to seizure, providing important clues to KTS-associated neurodevelopmental deficits.


2021 ◽  
Author(s):  
Daniela Neuhofer ◽  
Constanza Garcia-Keller ◽  
Madeline Hohmeister ◽  
Kailyn Seidling ◽  
Lauren Beloate ◽  
...  

Abstract Given that 30% of chronic cannabis users develop cannabis use disorder (CUD), it is critical to identify neuroadaptations that contribute to this disease. The nucleus accumbens core (NAcore) is important for drug seeking and ~ 90% of all NAcore neurons are divided into D1- and D2-medium spiny neurons (MSNs) that serve opposing roles in drug seeking. Drugs of abuse induce D1- and D2-MSN specific adaptations but whether ∆9-tetrahydrocannabinol (THC) use initiates similar neuroadaptations is unknown. D1- and D2-Cre transgenic rats were transfected with Cre-dependent reporters and trained to self-administer THC + cannabidiol (THC + CBD). After extinction training dendritic spine morphology, glutamate transmission, CB1R function and cFOS expression were quantified. We found that extinction from THC + CBD induced a loss of large spine heads in D1- but not D2-MSNs and a commensurate reduction in glutamate synaptic transmission. Also, CB1R function was impaired on glutamatergic synapses onto D1-MSNs and this was paralleled by an augmented capacity to potentiate glutamate transmission in D1-MSNs. CB1R function and glutamate synaptic transmission on D2-MSN synapses were unaffected by THC + CBD use. Using cFOS expression as an activity marker, we found that D1-MSNs activity remained unchanged after extinction from THC + CBD but significantly increased after 60 minutes cue-induced drug seeking. Surprisingly, the percentage of D2-MSNs expressing cFOS decreased after extinction from THC + CBD and this decrease was restored by drug cues. Thus, glutamatergic adaptations in D1-MSNs partially predict activity changes and pose modulating CB1R function that is down-regulated selectively at D1-MSN synapses as a potential treatment strategy for CUD.


2021 ◽  
Vol 150 ◽  
pp. 105246
Author(s):  
Rose B. Creed ◽  
Rosalinda C. Roberts ◽  
Charlene B. Farmer ◽  
Lori L. McMahon ◽  
Matthew S. Goldberg

2021 ◽  
Author(s):  
Andry Andrianarivelo ◽  
Estefani Saint-Jour ◽  
Paula Pousinha ◽  
Sebastian P. Fernandez ◽  
Anna Petitbon ◽  
...  

AbstractAddictive drugs increase dopamine in the nucleus accumbens (NAc), where it persistently shapes excitatory glutamate transmission and hijacks natural reward processing. Herein, we provide evidence, from mice to human, that an underlying mechanism relies on drug-evoked heteromerization of glutamate NMDA receptors (NMDAR) with dopamine receptor 1 (D1R) or 2 (D2R). Using temporally-controlled inhibition of D1R-NMDAR heteromerization, we unraveled their selective implication in early developmental phases of cocaine-mediated synaptic, morphological and behavioral responses. In contrast, preventing D2R-NMDAR heteromerization blocked the persistence of these adaptations. Importantly, interfering with these heteromers spared natural reward processing. Strikingly, we established that D2R-NMDAR complexes exist in human samples and showed that, despite a decreased D2R protein expression in the NAc, psychostimulant-addicts display a higher proportion of D2R forming heteromers with NMDAR. These findings contribute to a better understanding of molecular mechanisms underlying addiction and uncover D2R-NMDAR heteromers as targets with potential therapeutic value.


2021 ◽  
Vol 99 (3) ◽  
pp. 327-334
Author(s):  
Kamila Czarnecka ◽  
Jakub Chuchmacz ◽  
Przemysław Wójtowicz ◽  
Paweł Szymański

AbstractMemantine is used in Alzheimer’s disease treatment as a non-competitive modern-affinity strong voltage-dependent N-methyl-D-aspartate receptor antagonist. The fundamental role of these receptors is to bind glutamate: the main excitatory neurotransmitter in the brain, believed to play a crucial role in neuronal plasticity and learning mechanisms. Glutamate transmission plays an important role in all internal CNS structures and maintains the physiological state of the brain. Excessive glutamate transmission can lead to enlarged calcium ion current which may cause neurotoxicity; however, insufficient transmission can drastically alter the information flow in neurons and the brain, potentially causing schizophrenia-like symptoms by replacing lost information with completely new stimuli. Hence, it is possible that the modulation of NMDA activity may give rise to pathophysiological states. Available literature and clinical trials indicate that memantine is well tolerated by patients, with very few and light side effects. There is a belief that memantine may also benefit other conditions such as schizophrenia and depression.


2021 ◽  
Vol 148 ◽  
pp. 105188
Author(s):  
Guan-Hsun Wang ◽  
Ping Chou ◽  
Shu-Wei Hsueh ◽  
Ya-Chin Yang ◽  
Chung-Chin Kuo

2020 ◽  
Vol 1748 ◽  
pp. 147098
Author(s):  
Karen K. Szumlinski ◽  
Daria L. Thompson ◽  
Rachel M. Renton ◽  
Alexis W. Ary ◽  
Kevin D. Lominac

Author(s):  
Bethania Mongi‐Bragato ◽  
María Paula Avalos ◽  
Andrea S. Guzmán ◽  
Constanza García‐Keller ◽  
Flavia A. Bollati ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document