scholarly journals Regulation of junctional and non‐junctional sarcoplasmic reticulum calcium release in excitation‐contraction coupling in cat atrial myocytes

2003 ◽  
Vol 546 (1) ◽  
pp. 119-135 ◽  
Author(s):  
Katherine A. Sheehan ◽  
Lothar A. Blatter
Author(s):  
J.R. Sommer ◽  
E. Bossen ◽  
A. Fabiato

The junctional sarcoplasmic reticulum (JSR, syn. terminal cisterna) is implicated in Ca++storage and release for muscle contraction. Its discrete ultrastructure permits distinction from the rest of the SR (free SR) even when it occurs without plasmalemmal contact, e.g. as extended JSR (EJSR) in bird, and corbular SR (CSR) in mammalian cardiac cells. The close apposition of JSR to plasmalemma via junctional processes is central to proposed mechanisms of translating voltage-dependent charge transfers at the plasmalemma during the action potential into Ca++release from the JSR. These hypotheses are put into question by the existence of EJSR (and CSR) which in birds constitutes 70-80% of the total JSR. An alternate hypothesis proposes, at least for cardiac cells, that Ca++entering the cell during excitation causes additional Ca++to be freed intracellularly. The notion of a chemical transmitter acting by diffusion is attractive because it will allow for the anomalous topography of EJSR, especially since bird cardiac cells have only about half the diameter of their mammalian relatives and have no transverse tubules.


1997 ◽  
Vol 80 (3) ◽  
pp. 345-353 ◽  
Author(s):  
Stephane N. Hatem ◽  
Agnes Benardeau ◽  
Catherine Rucker-Martin ◽  
Isabelle Marty ◽  
Patricia de Chamisso ◽  
...  

1997 ◽  
Vol 3 (S2) ◽  
pp. 247-248
Author(s):  
J.R. Sommer ◽  
T. High ◽  
P. Ingram ◽  
D. Kopf ◽  
R. Nassar ◽  
...  

Extended junctional sarcoplasmic reticulum (EJSR) is an invariant differentiation of the sarcoplasmic reticulum (SR) in bird cardiac myocytes (CM) and central to excitation-contraction coupling (ECC). EJSR occurs as both continuous and discontinuous extensions of junctional sarcoplasmic reticulum (JSR), and surrounds and pervades the Z/I band as the “ EJSR Z-rete” whose geometry has mechanistic implications for the function of “couplings” in ECC, in general. “Peripheral coupling(s)” (PC) in birds, and the additional “interior coupling(s)” (IC) at transverse tubules (TT) in mammals, are formed by tight apposition to plasmalemma of JSR, a specialized calcium (Ca) store of the SR. Free SR (FSR; i.e. free of JSR/EJSR specializations) is the rest of the smooth, tubular SR network, which connects intercalated patches of EJSR forming the EJSR Z-retes and, elsewhere, displays both longitudinal and transverse geometries in surrounding the contractile material for the purpose of sequestering Ca after each muscle contraction. Except for EJSR having no plasmalemmal contact, morphologically, EJSR and JSR are homologues:1 both have similar sizes; are studded (approx. 32 nm center-to-center) with junctional processes (JP; ryanodine receptor (RyR)/-Ca-release channels);


1990 ◽  
Vol 258 (2) ◽  
pp. H610-H615 ◽  
Author(s):  
J. C. Kentish ◽  
R. J. Barsotti ◽  
T. J. Lea ◽  
I. P. Mulligan ◽  
J. R. Patel ◽  
...  

The ability of Ca2+ or inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] to release Ca2+ from cardiac sarcoplasmic reticulum (SR) was investigated using saponin-skinned ventricular trabeculae from rats. To overcome diffusion delays, rapid increases in the concentrations of Ca2+ and Ins(1,4,5)P3 were produced by laser photolysis of “caged Ca2+” (Nitr-5) and “caged Ins(1,4,5)P3”. Photolysis of Nitr-5 to produce a small jump in [Ca2+] from pCa 6.8 to 6.4 induced a large and rapid force response (t1/2 = 0.89 s at 12 degrees C); the source of the Ca2+ that activated the myofibrils was judged to be the SR, since it was blocked by 0.1 mM ryanodine or 5 mM caffeine. A smaller, slower, and less consistent release of SR Ca2+ was produced by photorelease of Ins(1,4,5)P3. The results demonstrate that these caged compounds can be used to study excitation-contraction coupling in skinned multicellular preparations of cardiac muscle. The data are consistent with a major role for Ca2(+)-induced Ca2+ release in cardiac activation, whereas the role for Ins(1,4,5)P3 may be to modulate, rather than directly stimulate, SR Ca2+ release.


Sign in / Sign up

Export Citation Format

Share Document