Avian Extended Junctional SR: 3-D Geometry Rendered in Stereo

1997 ◽  
Vol 3 (S2) ◽  
pp. 247-248
Author(s):  
J.R. Sommer ◽  
T. High ◽  
P. Ingram ◽  
D. Kopf ◽  
R. Nassar ◽  
...  

Extended junctional sarcoplasmic reticulum (EJSR) is an invariant differentiation of the sarcoplasmic reticulum (SR) in bird cardiac myocytes (CM) and central to excitation-contraction coupling (ECC). EJSR occurs as both continuous and discontinuous extensions of junctional sarcoplasmic reticulum (JSR), and surrounds and pervades the Z/I band as the “ EJSR Z-rete” whose geometry has mechanistic implications for the function of “couplings” in ECC, in general. “Peripheral coupling(s)” (PC) in birds, and the additional “interior coupling(s)” (IC) at transverse tubules (TT) in mammals, are formed by tight apposition to plasmalemma of JSR, a specialized calcium (Ca) store of the SR. Free SR (FSR; i.e. free of JSR/EJSR specializations) is the rest of the smooth, tubular SR network, which connects intercalated patches of EJSR forming the EJSR Z-retes and, elsewhere, displays both longitudinal and transverse geometries in surrounding the contractile material for the purpose of sequestering Ca after each muscle contraction. Except for EJSR having no plasmalemmal contact, morphologically, EJSR and JSR are homologues:1 both have similar sizes; are studded (approx. 32 nm center-to-center) with junctional processes (JP; ryanodine receptor (RyR)/-Ca-release channels);

Author(s):  
J.R. Sommer ◽  
E. Bossen ◽  
A. Fabiato

The junctional sarcoplasmic reticulum (JSR, syn. terminal cisterna) is implicated in Ca++storage and release for muscle contraction. Its discrete ultrastructure permits distinction from the rest of the SR (free SR) even when it occurs without plasmalemmal contact, e.g. as extended JSR (EJSR) in bird, and corbular SR (CSR) in mammalian cardiac cells. The close apposition of JSR to plasmalemma via junctional processes is central to proposed mechanisms of translating voltage-dependent charge transfers at the plasmalemma during the action potential into Ca++release from the JSR. These hypotheses are put into question by the existence of EJSR (and CSR) which in birds constitutes 70-80% of the total JSR. An alternate hypothesis proposes, at least for cardiac cells, that Ca++entering the cell during excitation causes additional Ca++to be freed intracellularly. The notion of a chemical transmitter acting by diffusion is attractive because it will allow for the anomalous topography of EJSR, especially since bird cardiac cells have only about half the diameter of their mammalian relatives and have no transverse tubules.


2005 ◽  
Vol 385 (3) ◽  
pp. 803-813 ◽  
Author(s):  
Angela F. DULHUNTY ◽  
Yamuna KARUNASEKARA ◽  
Suzanne M. CURTIS ◽  
Peta J. HARVEY ◽  
Philip G. BOARD ◽  
...  

A physical association between the II–III loop of the DHPR (dihydropryidine receptor) and the RyR (ryanodine receptor) is essential for excitation–contraction coupling in skeletal, but not cardiac, muscle. However, peptides corresponding to a part of the II–III loop interact with the cardiac RyR2 suggesting the possibility of a physical coupling between the proteins. Whether the full II–III loop and its functionally important ‘C’ region (cardiac DHPR residues 855–891 or skeletal 724–760) interact with cardiac RyR2 is not known and is examined in the present study. Both the cardiac DHPR II–III loop (CDCL) and cardiac peptide (Cc) activated RyR2 channels at concentrations >10 nM. The skeletal DHPR II–III loop (SDCL) activated channels at ≤100 nM and weakly inhibited at ≥1 μM. In contrast, skeletal peptide (Cs) inhibited channels at all concentrations when added alone, or was ineffective if added in the presence of Cc. Ca2+-induced Ca2+ release from cardiac sarcoplasmic reticulum was enhanced by CDCL, SDCL and the C peptides. The results indicate that the interaction between the II–III loop and RyR2 depends critically on the ‘A’ region (skeletal DHPR residues 671–690 or cardiac 793–812) and also involves the C region. Structure analysis indicated that (i) both Cs and Cc are random coil at room temperature, but, at 5 °C, have partial helical regions in their N-terminal and central parts, and (ii) secondary-structure profiles for CDCL and SDCL are similar. The data provide novel evidence that the DHPR II–III loop and its C region interact with cardiac RyR2, and that the ability to interact is not isoform-specific.


1982 ◽  
Vol 93 (3) ◽  
pp. 883-892 ◽  
Author(s):  
A O Jorgensen ◽  
A C Shen ◽  
P Daly ◽  
D H MacLennan

Localization of the Ca2+ + Mg2+-ATPase of the sarcoplasmic reticulum in rat papillary muscle was determined by indirect immunofluorescence and immunoferritin labeling of cryostat and ultracryotomy sections, respectively. The Ca2+ + Mg2+-ATPase was found to be rather uniformly distributed in the free sarcoplasmic reticulum membrane but to be absent from both peripheral and interior junctional sarcoplasmic reticulum membrane, transverse tubules, sarcolemma, and mitochondria. This suggests that the Ca2+ + Mg2+-ATPase of the sarcoplasmic reticulum is antigenically unrelated to the Ca2+ + Mg2+-ATPase of the sarcolemma. These results are in agreement with the idea that the sites of interior and peripheral coupling between sarcoplasmic reticulum membrane and transverse tubules and between sarcoplasmic reticulum and sarcolemmal membranes play the same functional role in the excitation-contraction coupling in cardiac muscle.


1998 ◽  
Vol 76 (5) ◽  
pp. 681-694 ◽  
Author(s):  
Peng Leong ◽  
David H MacLennan

Evidence for functional interactions between the Ca2+ release channel in the skeletal muscle sarcoplasmic reticulum (the ryanodine receptor) and the L-type Ca2+ channel in the sarcolemma (the dihydropyridine receptor), leading to excitation-contraction coupling, is reviewed and experimental systems used to identify candidate sites of interaction are outlined.Key words: sarcoplasmic reticulum, excitation-contraction coupling.


2017 ◽  
Vol 11 ◽  
pp. 117954681769860 ◽  
Author(s):  
Mary M Maleckar ◽  
Andrew G Edwards ◽  
William E Louch ◽  
Glenn T Lines

Excitation–contraction coupling in cardiac myocytes requires calcium influx through L-type calcium channels in the sarcolemma, which gates calcium release through sarcoplasmic reticulum ryanodine receptors in a process known as calcium-induced calcium release, producing a myoplasmic calcium transient and enabling cardiomyocyte contraction. The spatio-temporal dynamics of calcium release, buffering, and reuptake into the sarcoplasmic reticulum play a central role in excitation–contraction coupling in both normal and diseased cardiac myocytes. However, further quantitative understanding of these cells’ calcium machinery and the study of mechanisms that underlie both normal cardiac function and calcium-dependent etiologies in heart disease requires accurate knowledge of cardiac ultrastructure, protein distribution and subcellular function. As current imaging techniques are limited in spatial resolution, limiting insight into changes in calcium handling, computational models of excitation–contraction coupling have been increasingly employed to probe these structure–function relationships. This review will focus on the development of structural models of cardiac calcium dynamics at the subcellular level, orienting the reader broadly towards the development of models of subcellular calcium handling in cardiomyocytes. Specific focus will be given to progress in recent years in terms of multi-scale modeling employing resolved spatial models of subcellular calcium machinery. A review of the state-of-the-art will be followed by a review of emergent insights into calcium-dependent etiologies in heart disease and, finally, we will offer a perspective on future directions for related computational modeling and simulation efforts.


2007 ◽  
Vol 130 (4) ◽  
pp. 365-378 ◽  
Author(s):  
Sanjeewa A. Goonasekera ◽  
Nicole A. Beard ◽  
Linda Groom ◽  
Takashi Kimura ◽  
Alla D. Lyfenko ◽  
...  

Ca2+ release from intracellular stores is controlled by complex interactions between multiple proteins. Triadin is a transmembrane glycoprotein of the junctional sarcoplasmic reticulum of striated muscle that interacts with both calsequestrin and the type 1 ryanodine receptor (RyR1) to communicate changes in luminal Ca2+ to the release machinery. However, the potential impact of the triadin association with RyR1 in skeletal muscle excitation–contraction coupling remains elusive. Here we show that triadin binding to RyR1 is critically important for rapid Ca2+ release during excitation–contraction coupling. To assess the functional impact of the triadin-RyR1 interaction, we expressed RyR1 mutants in which one or more of three negatively charged residues (D4878, D4907, and E4908) in the terminal RyR1 intraluminal loop were mutated to alanines in RyR1-null (dyspedic) myotubes. Coimmunoprecipitation revealed that triadin, but not junctin, binding to RyR1 was abolished in the triple (D4878A/D4907A/E4908A) mutant and one of the double (D4907A/E4908A) mutants, partially reduced in the D4878A/D4907A double mutant, but not affected by either individual (D4878A, D4907A, E4908A) mutations or the D4878A/E4908A double mutation. Functional studies revealed that the rate of voltage- and ligand-gated SR Ca2+ release were reduced in proportion to the degree of interruption in triadin binding. Ryanodine binding, single channel recording, and calcium release experiments conducted on WT and triple mutant channels in the absence of triadin demonstrated that the luminal loop mutations do not directly alter RyR1 function. These findings demonstrate that junctin and triadin bind to different sites on RyR1 and that triadin plays an important role in ensuring rapid Ca2+ release during excitation–contraction coupling in skeletal muscle.


Sign in / Sign up

Export Citation Format

Share Document