Calcium release from cardiac sarcoplasmic reticulum induced by photorelease of calcium or Ins(1,4,5)P3

1990 ◽  
Vol 258 (2) ◽  
pp. H610-H615 ◽  
Author(s):  
J. C. Kentish ◽  
R. J. Barsotti ◽  
T. J. Lea ◽  
I. P. Mulligan ◽  
J. R. Patel ◽  
...  

The ability of Ca2+ or inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] to release Ca2+ from cardiac sarcoplasmic reticulum (SR) was investigated using saponin-skinned ventricular trabeculae from rats. To overcome diffusion delays, rapid increases in the concentrations of Ca2+ and Ins(1,4,5)P3 were produced by laser photolysis of “caged Ca2+” (Nitr-5) and “caged Ins(1,4,5)P3”. Photolysis of Nitr-5 to produce a small jump in [Ca2+] from pCa 6.8 to 6.4 induced a large and rapid force response (t1/2 = 0.89 s at 12 degrees C); the source of the Ca2+ that activated the myofibrils was judged to be the SR, since it was blocked by 0.1 mM ryanodine or 5 mM caffeine. A smaller, slower, and less consistent release of SR Ca2+ was produced by photorelease of Ins(1,4,5)P3. The results demonstrate that these caged compounds can be used to study excitation-contraction coupling in skinned multicellular preparations of cardiac muscle. The data are consistent with a major role for Ca2(+)-induced Ca2+ release in cardiac activation, whereas the role for Ins(1,4,5)P3 may be to modulate, rather than directly stimulate, SR Ca2+ release.

2005 ◽  
Vol 385 (3) ◽  
pp. 803-813 ◽  
Author(s):  
Angela F. DULHUNTY ◽  
Yamuna KARUNASEKARA ◽  
Suzanne M. CURTIS ◽  
Peta J. HARVEY ◽  
Philip G. BOARD ◽  
...  

A physical association between the II–III loop of the DHPR (dihydropryidine receptor) and the RyR (ryanodine receptor) is essential for excitation–contraction coupling in skeletal, but not cardiac, muscle. However, peptides corresponding to a part of the II–III loop interact with the cardiac RyR2 suggesting the possibility of a physical coupling between the proteins. Whether the full II–III loop and its functionally important ‘C’ region (cardiac DHPR residues 855–891 or skeletal 724–760) interact with cardiac RyR2 is not known and is examined in the present study. Both the cardiac DHPR II–III loop (CDCL) and cardiac peptide (Cc) activated RyR2 channels at concentrations >10 nM. The skeletal DHPR II–III loop (SDCL) activated channels at ≤100 nM and weakly inhibited at ≥1 μM. In contrast, skeletal peptide (Cs) inhibited channels at all concentrations when added alone, or was ineffective if added in the presence of Cc. Ca2+-induced Ca2+ release from cardiac sarcoplasmic reticulum was enhanced by CDCL, SDCL and the C peptides. The results indicate that the interaction between the II–III loop and RyR2 depends critically on the ‘A’ region (skeletal DHPR residues 671–690 or cardiac 793–812) and also involves the C region. Structure analysis indicated that (i) both Cs and Cc are random coil at room temperature, but, at 5 °C, have partial helical regions in their N-terminal and central parts, and (ii) secondary-structure profiles for CDCL and SDCL are similar. The data provide novel evidence that the DHPR II–III loop and its C region interact with cardiac RyR2, and that the ability to interact is not isoform-specific.


Physiology ◽  
1987 ◽  
Vol 2 (5) ◽  
pp. 182-186 ◽  
Author(s):  
J Vergara ◽  
K Asotra

There is a temperature-dependent lag between depolarization of transverse tubules by the action potential and onset of calcium release from the sacromplasmic reticulum that reveals the occurrence of a chemical step in excitation-contraction coupling. Recent studies suggest that in vertebrate muscle inositol 1,4,5-trisphosphate may act as a chemical link in this process.


2005 ◽  
Vol 288 (3) ◽  
pp. R607-R614 ◽  
Author(s):  
K. M. Dibb ◽  
C. L. Hagarty ◽  
A. S. I. Loudon ◽  
A. W. Trafford

In mammals, changes in photoperiod regulate a diverse array of physiological and behavioral processes, an example of which in the Siberian hamster ( Phodopus sungorus) is the expression of bouts of daily torpor following prolonged exposure to a short photoperiod. During torpor, body temperature drops dramatically; however, unlike in nonhibernating or nontorpid species, the myocardium retains the ability to contract and is resistant to the development of arrhythmias. In the present study, we sought to determine whether exposure to a short photoperiod results in alterations to cardiac excitation-contraction coupling, thus potentially enabling the heart to survive periods of low temperature during torpor. Experiments were performed on single ventricular myocytes freshly isolated from the hearts of Siberian hamsters that had been exposed to either 12 wk of short-day lengths (SD) or 12 wk of long-day lengths (LD). In SD-acclimated animals, the amplitude of the systolic Ca2+ transient was increased (e.g., from 142 ± 17 nmol/l in LD to 229 ± 31 nmol/l in SD at 4 Hz; P < 0.001). The increased Ca2+ transient amplitude in the SD-acclimated animals was not associated with any change in the shape or duration of the action potential. However, sarcoplasmic reticulum Ca2+ content measured after current-clamp stimulation was increased in the SD-acclimated animals (at 4 Hz, 110 ± 5 vs. 141 ± 15 μmol/l, P < 0.05). We propose that short photoperiods reprogram the function of the cardiac sarcoplasmic reticulum, resulting in an increased Ca2+ content, and that this may be a necessary precursor for maintenance of cardiac function during winter torpor.


2020 ◽  
Author(s):  
Agnė Tilūnaitė ◽  
David Ladd ◽  
Hilary Hunt ◽  
Christian Soeller ◽  
H. Llewelyn Roderick ◽  
...  

AbstractCalcium plays critical roles in cardiac cells, coupling electrical excitation to mechanical contraction with each heartbeat, while simultaneously mediating biochemical signals that regulate cell growth. While ryanodine receptors (RyRs) are fundamental to generation of elementary calcium release events (sparks) and global calcium elevations that underlie excitation-contraction coupling (ECC), calcium release via inositol 1,4,5-trisphosphate receptors (IP3Rs) is also reported in cardiomyocytes. IP3R calcium release modifies ECC as well as contributing to downstream regulation of hypertrophic gene expression. Recent studies suggest that proximal localisation of IP3Rs with RyRs contributes to their ability to modify Ca2+ handling during ECC. Here we aim to determine the mechanism by which IP3Rs modify Ca2+ handling in cardiomyocytes. We develop a mathematical model incorporating the stochastic behaviour of receptor opening that allows for the parametric tuning of the system to reveal the impact of IP3Rs on spark activation. By testing multiple spark initiation mechanisms, we find that Ca2+ release via IP3Rs result in increased propensity for spark initiation within the cardiac dyad. Our simulations suggest that opening of IP3Rs elevates Ca2+ within the dyad, which increase the probability of spark initiation. Finally, we find that while increasing the number of IP3Rs increases the probability of spark formation, it has little effect on spark amplitude, duration, or overall shape. Our study therefore suggests that IP3R play a critical role in modulating Ca2+ signaling for excitation contraction couplingAuthor summaryWhile Ca2+ release through ryanodine receptors (RyRs) initiates contraction in cardiomyocytes, the role of inositol 1,4,5-trisphosphate receptors (IP3Rs) in cardiomyocytes is less clear with Ca2+ release through these channels being invoked in regulating ECC and hypertrophic signalling. RyRs generate cytosolic Ca2+ signals through elemental Ca2+ release events called sparks. The mechanisms by which IP3Rs influence cytosolic Ca2+ are not well understood. We created a 1D model of calcium spark formation in a cardiomyocyte dyad—the primary site of elemental RyR-based calcium release. We investigated possible behaviours of IP3Rs and their interaction with RyRs in generating Ca2+ sparks. We show that for high IP3 concentration, a large number of IP3Rs and high IP3R affinity are required to noticeably affect spark shape. At lower IP3 concentration IP3Rs can increase Ca2+ spark activity, but do not significantly alter the spark shape. Finally our simulations suggest that spark frequency can be reliably increased when IP3Rs activity is such that a small continuous Ca2+ flux is introduced to the dyad to elevate Ca2+, and not via brief but high Ca2+ release from these receptors.


1987 ◽  
Vol 253 (3) ◽  
pp. C364-C368 ◽  
Author(s):  
E. Rousseau ◽  
J. S. Smith ◽  
G. Meissner

Ryanodine affects excitation-contraction coupling in skeletal and cardiac muscle by specifically interacting with the sarcoplasmic reticulum (SR) Ca2+ release channel. The effect of the drug at the single channel level was studied by incorporating skeletal and cardiac SR vesicles into planar lipid bilayers. The two channels were activated by micromolar free Ca2+ and millimolar ATP and inhibited by Mg2+ and ruthenium red. Addition of micromolar concentrations of ryanodine decreased about twofold the unit conductance of the Ca2+- and ATP-activated skeletal and cardiac channels. A second effect of ryanodine was to increase the open probability (Po) of the channels in such a way that Po was close to unity under a variety of activating and inactivating conditions. The effects of ryanodine were long lasting in that removal of ryanodine by perfusion did not return the channels into their fully conducting state.


1993 ◽  
Vol 120 (5) ◽  
pp. 1137-1146 ◽  
Author(s):  
M C Moschella ◽  
A R Marks

Calcium release from intracellular stores is the signal generated by numerous regulatory pathways including those mediated by hormones, neurotransmitters and electrical activation of muscle. Recently two forms of intracellular calcium release channels (CRCs) have been identified. One, the inositol 1,4,5-trisphosphate receptors (IP3Rs) mediate IP3-induced Ca2+ release and are believed to be present on the ER of most cell types. A second form, the ryanodine receptors (RYRs) of the sarcoplasmic reticulum, have evolved specialized functions relevant to muscle contraction and are the major CRCs found in striated muscles. Though structurally related, IP3Rs and RYRs have distinct physiologic and pharmacologic profiles. In the heart, where the dominant mechanism of intracellular calcium release during excitation-contraction coupling is Ca(2+)-induced Ca2+ release via the RYR, a role for IP3-mediated Ca2+ release has also been proposed. It has been assumed that IP3Rs are expressed in the heart as in most other tissues, however, it has not been possible to state whether cardiac IP3Rs were present in cardiac myocytes (which already express abundant amounts of RYR) or only in non-muscle cells within the heart. This lack of information regarding the expression and structure of an IP3R within cardiac myocytes has hampered the elucidation of the significance of IP3 signaling in the heart. In the present study we have used combined in situ hybridization to IP3R mRNA and immunocytochemistry to demonstrate that, in addition to the RYR, an IP3R is also expressed in rat cardiac myocytes. Immunoreactivity and RNAse protection have shown that the IP3R expressed in cardiac myocytes is structurally similar to the IP3R in brain and vascular smooth muscle. Within cardiac myocytes, IP3R mRNA levels were approximately 50-fold lower than that of the cardiac RYR mRNA. Identification of an IP3R in cardiac myocytes provides the basis for future studies designed to elucidate its functional role both as a mediator of pharmacologic and hormonal influences on the heart, and in terms of its possible interaction with the RYR during excitation-contraction coupling in the heart.


Sign in / Sign up

Export Citation Format

Share Document