scholarly journals Operational Modes and System Design of a 2.0 Mwth Sodium Molten Salt Pilot System

2021 ◽  
Author(s):  
Kenneth Armijo ◽  
Matthew Carlson ◽  
Dwight Dorsey ◽  
Joshua Christian ◽  
Joe Coventry ◽  
...  
2020 ◽  
Author(s):  
Kenneth M. Armijo ◽  
Matthew D. Carlson ◽  
Dwight S. Dorsey ◽  
Jesus D. Ortega ◽  
Dimitri A. Madden ◽  
...  

Author(s):  
Kenneth M. Armijo ◽  
Matthew D. Carlson ◽  
Dwight S. Dorsey ◽  
Joshua M. Christian ◽  
Craig S. Turchi

Abstract Nitrate molten salt concentrating solar power (CSP) systems are currently deployed globally and are considered state-of the art heat transfer fluids (HTFs) for present day high-temperature operation. Although slightly higher limits may be possible with molten salt, to fully realize SunShot efficiency goals of $15/kWhth HTFs and an LCOE of 6¢/kWh, HTF technologies working at higher temperatures (e.g., 650 °C to 750 °C) will require an alternative to molten salts, such as with alkali metal systems. This investigation explores the development of a 2.0 MWth sodium receiver system that employs a sodium receiver as the HTF, as well as with a ternary chloride (20%NaCl/40%MgCl/40%KCl by mol wt.%) salt as a thermal energy storage (TES) medium to facilitate a 6-hr. storage duration. A sodium-to-salt heat exchanger model as well as a salt-to-sCO2 primary heat exchanger model are employed and evaluated in this investigation. A thermodynamic system design model was developed using Engineering Equation Solver (EES) where state properties were calculated at inlets and outlets along both hot and cold legs of the pilot-scale plant. This investigation assesses receiver performance as well as system efficiency studies for the pump and system operational ranges. Results found that high efficiency sodium receivers were found to have higher heat transfer coefficients and required far less spreading of incident flux. The system performance model results suggest that for a pump speed of 2400 RPM, respective hot and cold pump TDH values were determined to be 260.1–307 ft. and 260.1–307 ft for pump flow rates of 90–120 GPM.


Author(s):  
J.M. Cowley

The HB5 STEM instrument at ASU has been modified previously to include an efficient two-dimensional detector incorporating an optical analyser device and also a digital system for the recording of multiple images. The detector system was built to explore a wide range of possibilities including in-line electron holography, the observation and recording of diffraction patterns from very small specimen regions (having diameters as small as 3Å) and the formation of both bright field and dark field images by detection of various portions of the diffraction pattern. Experience in the use of this system has shown that sane of its capabilities are unique and valuable. For other purposes it appears that, while the principles of the operational modes may be verified, the practical applications are limited by the details of the initial design.


1993 ◽  
Vol 38 (1) ◽  
pp. 101-102
Author(s):  
Charles G. Halcomb
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document