System Design of a 2.0 MWth Sodium/Molten Salt Pilot System

Author(s):  
Kenneth M. Armijo ◽  
Matthew D. Carlson ◽  
Dwight S. Dorsey ◽  
Joshua M. Christian ◽  
Craig S. Turchi

Abstract Nitrate molten salt concentrating solar power (CSP) systems are currently deployed globally and are considered state-of the art heat transfer fluids (HTFs) for present day high-temperature operation. Although slightly higher limits may be possible with molten salt, to fully realize SunShot efficiency goals of $15/kWhth HTFs and an LCOE of 6¢/kWh, HTF technologies working at higher temperatures (e.g., 650 °C to 750 °C) will require an alternative to molten salts, such as with alkali metal systems. This investigation explores the development of a 2.0 MWth sodium receiver system that employs a sodium receiver as the HTF, as well as with a ternary chloride (20%NaCl/40%MgCl/40%KCl by mol wt.%) salt as a thermal energy storage (TES) medium to facilitate a 6-hr. storage duration. A sodium-to-salt heat exchanger model as well as a salt-to-sCO2 primary heat exchanger model are employed and evaluated in this investigation. A thermodynamic system design model was developed using Engineering Equation Solver (EES) where state properties were calculated at inlets and outlets along both hot and cold legs of the pilot-scale plant. This investigation assesses receiver performance as well as system efficiency studies for the pump and system operational ranges. Results found that high efficiency sodium receivers were found to have higher heat transfer coefficients and required far less spreading of incident flux. The system performance model results suggest that for a pump speed of 2400 RPM, respective hot and cold pump TDH values were determined to be 260.1–307 ft. and 260.1–307 ft for pump flow rates of 90–120 GPM.

Author(s):  
Seok Ho Yoon ◽  
Duckjong Kim ◽  
Jun Seok Choi

In recent years, many researchers investigated micro channel heat exchangers because of its high efficiency and compactness. However, few experimental studies about micro channel heat exchanger in cryogenic environment have been conducted. In this study, micro channel was fabricated by chemical etching and heat exchanger core was made by diffusion bonding method for cryogenic reliability. Performance test was conducted in cryogenic test rig. Working fluids are liquid nitrogen and methane gas. Methane gas was condensed in the micro channel heat exchanger. Heat transfer coefficients and pressure drop were measured and the heat transfer characteristics were investigated. These results can be used to design the heat exchanger of gas liquefaction plant.


2021 ◽  
Vol 9 (4B) ◽  
Author(s):  
Devanand D. Chillal ◽  
◽  
Uday C. Kapale ◽  
N.R. Banapurmath ◽  
T. M. Yunus Khan ◽  
...  

The work presented is an effort to realize the changes occurring for convective coefficients of heat transfer in STHX fitted with inclined baffles. Effort has been undertaken using Fluent, a commercially available CFD code ona CAD model of small STHX with inclined baffles with cold liquid flowing into the tubes and hot liquid flowing in the shell. Four sets of CFD analysis have been carried out. The hot liquid flow rate through shell compartments varied from 0.2 kg/sec to 0.8 kg/sec in steps of 0.2 kg/sec, while keeping the cold liquid flow condition in tube at 0.4 kg/sec constant. Heat transfer rates, compartment temperatures, and overall heat transfer coefficients, for cold liquid and hot liquid, were studied. The results given by the software using CFD approach were appreciable and comparatively in agreement with the results available by the experimental work, which was undertaken for the same set of inlet pressure conditions, liquid flow rates, and inlet temperatures of liquid for both hot and cold liquids. The experimental output results were also used to validate the results given by the CFD software. The results from the CFD analysis were further used to conclude the effect of baffle inclination on heat duty. The process thus followed also helped realize the effects of baffle inclination on convective heat transfer coefficient of the liquid flow through the shell in an inclined baffle shell and tube heat exchanger. The temperature plots for both cold and hot liquid were also generated for understanding the compartmental temperature distributions inclusive of the inlet and outlet compartments. The heat duty for a heat exchanger has been found to increase with the increase in baffle inclinations from zero degree to 20 degrees. Likewise, the convective heat transfer coefficients have also been found to increase with the increase in baffle inclinations.


Author(s):  
Nan Jiang ◽  
Terrence W. Simon

The heater (or acceptor) of a Stirling engine, where most of the thermal energy is accepted into the engine by heat transfer, is the hottest part of the engine. Almost as hot is the adjacent expansion space of the engine. In the expansion space, the flow is oscillatory, impinging on a two-dimensional concavely-curved surface. Knowing the heat transfer on the inside surface of the engine head is critical to the engine design for efficiency and reliability. However, the flow in this region is not well understood and support is required to develop the CFD codes needed to design modern Stirling engines of high efficiency and power output. The present project is to experimentally investigate the flow and heat transfer in the heater head region. Flow fields and heat transfer coefficients are measured to characterize the oscillatory flow as well as to supply experimental validation for the CFD Stirling engine design codes. Presented also is a discussion of how these results might be used for heater head and acceptor region design calculations.


2020 ◽  
Vol 10 (15) ◽  
pp. 5225
Author(s):  
Barbara Arevalo-Torres ◽  
Jose L. Lopez-Salinas ◽  
Alejandro J. García-Cuéllar

The curved geometry of a coiled flow inverter (CFI) promotes chaotic mixing through a combination of coils and bends. Besides the heat exchanger geometry, the heat transfer can be enhanced by improving the thermophysical properties of the working fluid. In this work, aqueous solutions of dispersed TiO2 nanometer-sized particles (i.e., nanofluids) were prepared and characterized, and their effects on heat transfer were experimentally investigated in a CFI heat exchanger inserted in a forced convective thermal loop. The physical and transport properties of the nanofluids were measured within the temperature and volume concentration domains. The convective heat transfer coefficients were obtained at Reynolds numbers (NRe) and TiO2 nanoparticle volume concentrations ranging from 1400 to 9500 and 0–1.5 v/v%, respectively. The Nusselt number (NNu) in the CFI containing 1.0 v/v% nanofluid was 41–52% higher than in the CFI containing pure base fluid (i.e., water), while the 1.5 v/v% nanofluid increased the NNu by 4–8% compared to water. Two new correlations to predict the NNu of TiO2–water nanofluids in the CFI at Reynolds numbers of 1400 ≤ NRe ≤ 9500 and nanoparticle volume concentrations ranges of 0.2–1.0 v/v% and 0.2–1.5 v/v% are proposed.


Author(s):  
A. F. Tenbusch

Industrial burners provide process heat for a wide range of applications including cogeneration power production. In such applications a (typically) natural gas fired stationary turbine powers an electric generator and indirectly powers a heat recover steam generator (HRSG). The HRSG steam cycle operates by reclaiming the residual thermal energy of the gas turbine exhaust (GTE) flow. Burners are used to reheat the GTE and increase plant capacity during peak demand periods. CFD modeling is used in the design of burner systems for HRSG applications. GTE flow exiting the turbine unit is passed through a diffuser and then expanded into ductwork where the steam system heat exchangers are located. The expansion of the GTE flow from the turbine diffuser to the full cross section of the ductwork is usually severe and creates an uneven flow distribution. Flow correcting structure may be needed to distribute the flow depending upon the severity of the duct expansion. CFD modeling is used to predict the flow distribution of the GTE and guide the design of any necessary flow correcting structure. Burners are typically installed in an array upstream of the application heat exchanger inlet. CFD combustion, heat transfer, and flow analysis is employed in the burner system design process to locate the burner array, determine any necessary flow baffling, and to ensure and provide a uniform thermal distribution at the downstream heat exchanger inlet. Excessive thermal variation in the GTE flow entering the heat exchanger results in large temperature gradients that can lead to thermal cracking and fatigue of the heat exchanger surfaces. CFD modeling is used to ensure that the burner system design produces a uniform flow and temperature distribution at the heat exchanger inlet region downstream of the burners. This report presents a case study of a CFD flow, heat-transfer, and combustion analysis for a typical HRSG burner application. Two CFD models were constructed for the analysis. The first model included the coupled effects of flow, heat transfer, and combustion for the entire HRSG model volume, but excluded the effects of thermal radiation. The second model included a sub-domain of the HRSG volume near the burner and included the additional effects of thermal radiation, both surface radiation and the effects of the radiatively participating flue gas. Radiative effects were included in the second model by employing the Discrete Transfer Method. Results of the study showed the significant role thermal radiative heat transfer had on the resulting temperature predictions downstream of the flame zone.


2019 ◽  
Vol 158 ◽  
pp. 5832-5837 ◽  
Author(s):  
Jiewei Lao ◽  
Jing Ding ◽  
Qianmei Fu ◽  
Weilong Wang ◽  
Jianfeng Lu

Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3276 ◽  
Author(s):  
Jan Wajs ◽  
Michał Bajor ◽  
Dariusz Mikielewicz

In this paper a patented design of a heat exchanger with minijets, with a cylindrical construction is presented. It is followed by the results of its systematic experimental investigations in the single-phase convection heat transfer mode. Based on these results, validation of selected correlations (coming from the literature) describing the Nusselt number was carried out. An assessment of the heat exchange intensification level in the described heat exchanger was done through the comparison with a shell-and-tube exchanger of a classical design. The thermal-hydraulic characteristics of both units were the subjects of comparison. They were constructed for the identical thermal conditions, i.e., volumetric flow rates of the working media and the media temperatures at the inlets to the heat exchanger. The experimental studies of both heat exchangers were conducted on the same test facility. An increase in the heat transfer coefficients values for the minijets heat exchanger was observed in comparison with the reference one, whereas the generated minijets caused greater hydraulic resistance. Experimentally confirmed intensification of heat transfer on the air side, makes the proposed minijets heat exchanger application more attractive, for the waste heat utilization systems from gas sources.


Sign in / Sign up

Export Citation Format

Share Document