A New Detector System For The HB5 Stem Instrument

Author(s):  
J.M. Cowley

The HB5 STEM instrument at ASU has been modified previously to include an efficient two-dimensional detector incorporating an optical analyser device and also a digital system for the recording of multiple images. The detector system was built to explore a wide range of possibilities including in-line electron holography, the observation and recording of diffraction patterns from very small specimen regions (having diameters as small as 3Å) and the formation of both bright field and dark field images by detection of various portions of the diffraction pattern. Experience in the use of this system has shown that sane of its capabilities are unique and valuable. For other purposes it appears that, while the principles of the operational modes may be verified, the practical applications are limited by the details of the initial design.

Author(s):  
Marian Mankos ◽  
Shi Yao Wang ◽  
J.K. Weiss ◽  
J.M. Cowley

A novel detection system has been designed and realized experimentally on the HB5 STEM instrument. Shadow images, diffraction patterns as well as high-angle annular dark field and bright field images are observed simultaneously with high efficiency using CCD and TV cameras. The microscope can be operated in a wide range of instrument modes which includes the implementation of new techniques for high resolution imaging.As shown in Fig. 1, the detection system has three triple choice stages. Diffracted beams can be collected by three P47 fast phosphor annular detectors inclined at 45 degree to the axis and having different inner and outer acceptance angles, which can be adjusted by the postspecimen lenses. The detector is observed through a window by a photomultiplier. The annular detectors have been used also for a new bright field STEM technique which utilizes the inner rim of the detectors to collect only the outermost annular part of the central beam and promises an improvement in resolution by a factor of about 1.6. Initial results show some promise (Fig. 2). The transmitted beam is then converted into a light signal in YAG and P47 detectors; optionally the central part of the beam can be detected in the EELS spectrometer. The generated light signal is reflected through a system of mirrors, exits the vacuum chamber and is collected with high efficiency by high aperture optical lenses.


Author(s):  
P. Humble

There has been sustained interest over the last few years into both the intrinsic (primary and secondary) structure of grain boundaries and the extrinsic structure e.g. the interaction of matrix dislocations with the boundary. Most of the investigations carried out by electron microscopy have involved only the use of information contained in the transmitted image (bright field, dark field, weak beam etc.). Whilst these imaging modes are appropriate to the cases of relatively coarse intrinsic or extrinsic grain boundary dislocation structures, it is apparent that in principle (and indeed in practice, e.g. (1)-(3)) the diffraction patterns from the boundary can give extra independent information about the fine scale periodic intrinsic structure of the boundary.In this paper I shall describe one investigation into each type of structure using the appropriate method of obtaining the necessary information which has been carried out recently at Tribophysics.


1994 ◽  
Vol 2 (5) ◽  
pp. 24-25
Author(s):  
Anthony D. Buonaquisit

We are all familiar with digital imaging for SEM instruments. Digital Imaging for TEM applications is not as well established. Nevertheless, it seems clear that it will not be long before digital imaging for TEM becomes common place. Systems are improving and costs are plummeting. With this in mind it is timely to review what digital imaging for TEM involves.In normal TEM operation an electron bream is scattered through a thin section of a sample. Physical mechanisms cause the electrons of the beam to scatter, producing bright-field images, dark-field images and diffraction patterns. The operator adjusts the instrument to display one of these images on the instrument's viewing screen. A photographic record is collected by flipping the viewing screen and exposing a sheet of film held in the TEM's camera. Exposed negatives can be removed for developing and printing in batches, using standard darkroom techniques.


Author(s):  
Larry Pierce ◽  
Peter R. Buseck

High resolution dark field (DF) images of the superstructures of the pyrrhotite (Fe1-xS) and bornite-digenite (Cu5FeS4-Cu9S5) series can be related to structure. Further, they provide more detail than bright field (BF) images. The same objective aperture size and stigmater settings were used for DF as for BF imaging; symmetrical arrangements of diffracted beams in the objective aperture were used. Images that can be related to structure were obtained at the defocus value giving the greatest image contrast, thereby enabling proper defocusing without requiring extensive through-focus series.For the minerals of interest, diffraction patterns consist of many superstructure reflections and a few subcell reflections. BF images contain primarily features of the superstructure, presumably because the subcell reflections fall far from the axis of the objective lens and thus are affected by spherical and chromatic aberrations and beam divergence. Likewise, DF images formed with a similar arrangement of beams as that in BF contain only features of superstructure, but with reverse contrast to BF.


Author(s):  
A.V. Jones

The most often quoted advantage of STEM over conventional TEM is the ability to produce multiple simultaneous images by the use of multiple detector systems. In practice, this postulated advantage has seldom been fully utilised, mainly because of the practical difficulties in designing such detector systems.Most STEMs to date have been constructed as two-channel instruments combining annular dark-field imaging with either filtered bright-freld or inelastic imaging. More complex forms of bright-field detector have been employed1, as have parallel-readout systems for energy-loss spectra but the ability of the spectrometer to produce multiple simultaneous images has not been fully utilised.The basis of the problem lies in the fact that the objective lens and the detector system(s) have in most cases been designed by the manufacturers as separate entities in order to simplify the later addition of user-specific detectors. Since the acceptance angle of even the best spectrometers is relatively small, additional post-specimen lenses [with their attendant aberrations] had to be added in order to make full use of the spectrometer.


2006 ◽  
Vol 61 (6) ◽  
pp. 665-671 ◽  
Author(s):  
Klemens Kelm ◽  
Werner Mader

Well-crystallized particles of cubic and tetragonal γ -Fe2O3 embedded in a Pd matrix were produced besides other oxides by internal oxidation of a Pd-Fe alloy in air. Particles of tetragonal γ -Fe2O3 consist of orientation domains with the c axes normal to each other. Particles of the ordered cubic γ -Fe2O3 appear single crystalline in bright field and in dark field images with reflections of the basic spinel structure. In dark field images enantiomorphous domains were observed using reflections of the ordered phase. From the analysis of electron diffraction patterns in the principal zone axes the description of ordered cubic γ -Fe2O3 in the enantiomorphous space groups P4132/P4332 follows without further presumptions. In the sequence from space group Fd3m of disordered cubic γ -Fe2O3 via P4132/P4332 of the ordered cubic phase to the pair P41212/P43212 of tetragonal γ -Fe2O3 a continuous group-subgroup relation can be derived. This relation shows that ordered cubic γ -Fe2O3 is an intermediate phase upon ordering of vacant octahedral sites towards tetragonal γ -Fe2O3


2019 ◽  
Vol 47 (1) ◽  
pp. 109-110
Author(s):  
F.N. Rybakov ◽  
A.B. Borisov

Chiral magnetic skyrmions are nanoscale vortex-like spin textures that form in the presence of an applied magnetic field in ferromagnets that support the DzyaloshinskiiMoriya interaction (DMI) because of strong spin-orbit coupling and broken inversion symmetry of the crystal. Recently, a new type of localized particle-like object – the chiral bobber (ChB) – was predicted theoretically (Rybakov et al., 2015) in such materials. Here, we report the direct observation of ChBs (Zheng et al., 2018) in thin films of B20-type FeGe by means of quantitative off-axis electron holography. Furthermore, we show that ChBs are able to coexist with skyrmions over a wide range of parameters, which suggests their possible practical applications in novel magnetic solid-state memory devices, in which a stream of binary data bits can be encoded by a sequence of skyrmions and bobbers. Work was performed within the state task of FANO Russia (subject “Quantum,” No. g.r. 01201463332) (АААА-А18-118020190095-4)).


Author(s):  
Jing Li ◽  
M. R. McCartney ◽  
R. E. Dunin-Borkowski ◽  
David J. Smith

Off-axis electron holography has been used to determine the mean inner potential of germanium using cleaved 90° wedge samples, where the wedge thickness profiles were checked by weak-beam dark-field extinction fringes. Dynamical contributions to the phase of the image were minimized by tilting to weakly diffracting conditions, as confirmed by reference to convergent-beam electron diffraction patterns. Small residual corrections were determined using multislice calculations. From a total of 18 separate measurements, it is concluded that the value of the mean inner potential is 14.3 (2) V, which agrees with recent theoretical calculations to within experimental error.


Author(s):  
H. Todokoro ◽  
S. Nomura ◽  
T. Komoda

It is interesting to observe polymers at atomic size resolution. Some works have been reported for thorium pyromellitate by using a STEM (1), or a CTEM (2,3). The results showed that this polymer forms a chain in which thorium atoms are arranged. However, the distance between adjacent thorium atoms varies over a wide range (0.4-1.3nm) according to the different authors.The present authors have also observed thorium pyromellitate specimens by means of a field emission STEM, described in reference 4. The specimen was prepared by placing a drop of thorium pyromellitate in 10-3 CH3OH solution onto an amorphous carbon film about 2nm thick. The dark field image is shown in Fig. 1A. Thorium atoms are clearly observed as regular atom rows having a spacing of 0.85nm. This lattice gradually deteriorated by successive observations. The image changed to granular structures, as shown in Fig. 1B, which was taken after four scanning frames.


Author(s):  
J.C.H. Spence ◽  
J. Mayer

The Zeiss 912 is a new fully digital, side-entry, 120 Kv TEM/STEM instrument for materials science, fitted with an omega magnetic imaging energy filter. Pumping is by turbopump and ion pump. The magnetic imaging filter allows energy-filtered images or diffraction patterns to be recorded without scanning using efficient parallel (area) detection. The energy loss intensity distribution may also be displayed on the screen, and recorded by scanning it over the PMT supplied. If a CCD camera is fitted and suitable new software developed, “parallel ELS” recording results. For large fields of view, filtered images can be recorded much more efficiently than by Scanning Reflection Electron Microscopy, and the large background of inelastic scattering removed. We have therefore evaluated the 912 for REM and RHEED applications. Causes of streaking and resonance in RHEED patterns are being studied, and a more quantitative analysis of CBRED patterns may be possible. Dark field band-gap REM imaging of surface states may also be possible.


Sign in / Sign up

Export Citation Format

Share Document