Reliability-Informed Life-Cycle Warranty Cost Analysis: A Case Study on a Transmission in Agricultural Equipment

2021 ◽  
Author(s):  
Meng Li ◽  
Jinqiang Liu ◽  
Venkat Nemani ◽  
Navaid Ahmed ◽  
G\xfcl E. Kremer ◽  
...  
Author(s):  
Meng Li ◽  
Jinqiang Liu ◽  
Venkat Pavan Nemani ◽  
Navaid Ahmed ◽  
Gül E. Kremer ◽  
...  

Abstract In agricultural and industrial equipment, both new and remanufactured systems are often available for warranty coverage. In such cases, it may be challenging for equipment manufacturers to properly trade-off between the system reliability and the cost associated with a replacement option (e.g., replace with a new or remanufactured system). To address this problem, we present a reliability-informed life-cycle warranty cost (LCWC) analysis framework that enables equipment manufacturers to evaluate different warranty policies. These warranty policies differ in whether a new or remanufactured system is used for replacement in the case of product failure. The novelty of this LCWC analysis framework lies in its ability to incorporate real-world field reliability data into warranty policy assessment using probabilistic warranty cost models that consider multiple life cycles. First, the reliability functions for the new and remanufactured systems are built as the time-to-failure distributions that provide the best-fit to the field reliability data. Then, these reliability functions and their corresponding warranty policies are used to build the LCWC models according to the specific warranty terms. Finally, Monte Carlo simulation is used to propagate the time-to-failure uncertainty of each system, modeled by its reliability function, through each LCWC model to produce a probability distribution of the LCWC. The effectiveness of the proposed reliability-informed LCWC analysis framework is demonstrated with a real-world case study on a transmission used in some agricultural equipment.


2019 ◽  
Vol 44 (19) ◽  
pp. 9517-9528 ◽  
Author(s):  
Guangling Zhao ◽  
Eva Ravn Nielsen ◽  
Enrique Troncoso ◽  
Kris Hyde ◽  
Jesús Simón Romeo ◽  
...  

2017 ◽  
Vol 21 ◽  
pp. 581-586 ◽  
Author(s):  
Raluca Dania Todor ◽  
Mircea Horne Horneț ◽  
Nicolae Fani Iordan

In the context of increasing concerns for sustainable development new comprehensive methods are developed by builders and architects in order to reduce the environmental impact of buildings. Life Cycle Cost Analysis (LCCA) is one of these methods, perhaps the most functional one for the evaluation process. Using this LCCA contributes to the integration of the design process and helps identify opportunities for energy efficiency, such as appropriate zoning, natural lighting and design optimization of heating, ventilation and air conditioning (HVAC). It also helps in finding the best solutions for reducing overall costs. LCCA is very little known in Romania and quasi unused practice for building design and for this reason the present paper contains a broad overview of the methodology and it’s uses highlighting its main advantages and a case study of the building design intended for laboratory research. The analyzed building is one of the 12 identical buildings of Transilvania University Research and Development Institute from Brasov.


Sign in / Sign up

Export Citation Format

Share Document