Transducer Optimization for Pulse-Echo Measurement of Material Nonlinearity

2021 ◽  
Author(s):  
Hyunjo Jeong ◽  
Sungjong Cho ◽  
Shuzeng Zhang ◽  
Xiongbing Li
2020 ◽  
Vol 20 (22) ◽  
pp. 13596-13606 ◽  
Author(s):  
Hyunjo Jeong ◽  
Sungjong Cho ◽  
Hyojeong Shin ◽  
Shuzeng Zhang ◽  
Xiongbing Li

Author(s):  
Thomas M. Moore

In the last decade, a variety of characterization techniques based on acoustic phenomena have come into widespread use. Characteristics of matter waves such as their ability to penetrate optically opaque solids and produce image contrast based on acoustic impedance differences have made these techniques attractive to semiconductor and integrated circuit (IC) packaging researchers.These techniques can be divided into two groups. The first group includes techniques primarily applied to IC package inspection which take advantage of the ability of ultrasound to penetrate deeply and nondestructively through optically opaque solids. C-mode Acoustic Microscopy (C-AM) is a recently developed hybrid technique which combines the narrow-band pulse-echo piezotransducers of conventional C-scan recording with the precision scanning and sophisticated signal analysis capabilities normally associated with the high frequency Scanning Acoustic Microscope (SAM). A single piezotransducer is scanned over the sample and both transmits acoustic pulses into the sample and receives acoustic echo signals from the sample.


2012 ◽  
Vol 2 (5) ◽  
pp. 546-548
Author(s):  
P. Vasantharani P. Vasantharani ◽  
◽  
I.Sankeeda I.Sankeeda

2019 ◽  
Author(s):  
Roman Schlem ◽  
Michael Ghidiu ◽  
Sean Culver ◽  
Anna-Lena Hansen ◽  
Wolfgang Zeier

<p>The lithium argyrodites Li<sub>6</sub>PS<sub>5</sub>X (X = Cl, Br, I) have been gaining momentum as candidates for electrolytes in all-solid-state batteries. While these materials have been well-characterized structurally, the influences of the static and dynamic lattice properties are not fully understood. Recent improvements to the ionic conductivity of Li<sub>6</sub>PS<sub>5</sub>I (which as a parent compound is a poor ionic conductor) via elemental substitutions have shown that a multitude of influences affect the ionic transport in the lithium argyrodites, and that even poor conductors in this class have room left for improvement.</p><p>Here we explore the influence of isoelectronic substitution of sulfur with selenium in Li<sub>6</sub>PS<sub>5-<i>x</i></sub>Se<i><sub>x</sub></i>I. Using a combination of X-ray diffraction, impedance spectroscopy, Raman spectroscopy, and pulse-echo speed of sound measurements,we explore the influence of the static and dynamic lattice on the ionic transport. The substitution of S<sup>2-</sup>with Se<sup>2- </sup>broadens the diffusion pathways and structural bottlenecks, as well as leading to a softer more polarizable lattice, all of which lower the activation barrier and lead to an increase in the ionic conductivity. This work sheds light on ways to systematically understand and improve the functional properties of this exciting material family. </p>


2020 ◽  
pp. 17-27
Author(s):  
А.А. Шелухин

In this article, the analysis of the acoustic path during the ultrasonic pulse echo testing of the rail head in production is carried out. The influence of the parameters of the applied piezoelectric transducers on the distribution of sensitivity for the sounding scheme used in the existing installations is estimated and the real sensitivity of detecting defects of the «non-metallic inclusion» type is estimated.


Sign in / Sign up

Export Citation Format

Share Document