Acoustic microscopy techniques for the inspection of integrated circuit devices and packages

Author(s):  
Thomas M. Moore

In the last decade, a variety of characterization techniques based on acoustic phenomena have come into widespread use. Characteristics of matter waves such as their ability to penetrate optically opaque solids and produce image contrast based on acoustic impedance differences have made these techniques attractive to semiconductor and integrated circuit (IC) packaging researchers.These techniques can be divided into two groups. The first group includes techniques primarily applied to IC package inspection which take advantage of the ability of ultrasound to penetrate deeply and nondestructively through optically opaque solids. C-mode Acoustic Microscopy (C-AM) is a recently developed hybrid technique which combines the narrow-band pulse-echo piezotransducers of conventional C-scan recording with the precision scanning and sophisticated signal analysis capabilities normally associated with the high frequency Scanning Acoustic Microscope (SAM). A single piezotransducer is scanned over the sample and both transmits acoustic pulses into the sample and receives acoustic echo signals from the sample.

Author(s):  
O. Diaz de Leon ◽  
M. Nassirian ◽  
C. Todd ◽  
R. Chowdhury

Abstract Integration of circuits on semiconductor devices with resulting increase in pin counts is driving the need for improvements in packaging for functionality and reliability. One solution to this demand is the Flip- Chip concept in Ultra Large Scale Integration (ULSI) applications [1]. The flip-chip technology is based on the direct attach principle of die to substrate interconnection.. The absence of bondwires clearly enables packages to become more slim and compact, and also provides higher pin counts and higher-speeds [2]. However, due to its construction, with inherent hidden structures the Flip-Chip technology presents a challenge for non-destructive Failure Analysis (F/A). The scanning acoustic microscope (SAM) has recently emerged as a valuable evaluation tool for this purpose [3]. C-mode scanning acoustic microscope (C-SAM), has the ability to demonstrate non-destructive package analysis while imaging the internal features of this package. Ultrasonic waves are very sensitive, particularly when they encounter density variations at surfaces, e.g. variations such as voids or delaminations similar to air gaps. These two anomalies are common to flip-chips. The primary issue with this package technology is the non-uniformity of the die attach through solder ball joints and epoxy underfill. The ball joints also present defects as open contacts, voids or cracks. In our acoustic microscopy study packages with known defects are considered. It includes C-SCAN analysis giving top views at a particular package interface and a B-SCAN analysis that provides cross-sectional views at a desired point of interest. The cross-section analysis capability gives confidence to the failure analyst in obtaining information from a failing area without physically sectioning the sample and destroying its electrical integrity. Our results presented here prove that appropriate selection of acoustic scanning modes and frequency parameters leads to good reliable correlation between the physical defects in the devices and the information given by the acoustic microscope.


Author(s):  
Li Na ◽  
Jawed Khan ◽  
Lonnie Adams

Abstract For stacked die package delamination inspection using C-mode acoustic microscope, traditional interface and thorough scan techniques cannot give enough of information when the delamination occurs in multi-interfaces, and echoes from adjacent interfaces are not sufficiently separated from each other. A thinner thickness in the stacked-die package could complicate C-mode scanning acoustic microscopy (CSAM) analysis and sometimes may lead to false interpretations. The first objective of this paper is to briefly explain the CSAM mechanism. Based on that, some of the drawbacks of current settings in detecting the delamination for stacked-die packages are presented. The last objective is to introduce quantitative B-scan analysis mode (Q-BAM) and Zip-Slice technologies in order to better understand and improve the reliability of detecting the delamination in stacked-die packages. Therefore, a large portion of this paper focuses on the Q-BAM and Zip-Slice data acquisition and image interpretation.


1996 ◽  
Vol 445 ◽  
Author(s):  
Nickolaos Strifas ◽  
Aris Christou

AbstractThe reliability of plastic packaged integrated circuits was assessed from the point of view of interfacial mechanical integrity. It is shown that the effect of structural weaknesses caused by poor bonding, voids, microcracks or delamination may not be evident in the electrical performance characteristics, but may cause premature failure. Acoustic microscopy (C-SAM) was selected for nondestructive failure analysis of the plastic integrated circuit (IC) packages. Integrated circuits in plastic dual in line packages were initially subjected to temperature (25 °C to 85 °C) and humidity cycling (50 to 85 %) where each cycle was of one hour duration and for over 100 cycles and then analyzed. Delamination at the interfaces between the different materials within the package, which is a major cause of moisture ingress and subsequent premature package failure, was measured. The principal areas of delamination were found along the leads extending from the chip to the edge of the molded body and along the die surface itself. Images of the 3-D internal structure were produced that were used to determine the mechanism for a package failure. The evidence of corrosion and stress corrosion cracks in the regions of delamination was identified.


1999 ◽  
Vol 14 (6) ◽  
pp. 2446-2448
Author(s):  
A. Wyler ◽  
G. Golan

A scanning acoustic microscope (SAM) has been used to investigate the structure of thermoplastic leather. This material is formed by pressing fibers of leather under high pressure and moderate temperature. The result is a matrix from transformed, melted fibers in which leftover fibers act as reinforcement. Unlike the scanning electron microscope (SEM), the SAM is able to distinguish between completely and incompletely transformed fibers and also to penetrate the material beneath the surface. The results show that the matrix is built as a domain structure. The advantages of the SAM over the SEM for organic materials are indicated.


2017 ◽  
Vol 34 (06) ◽  
pp. 1750034
Author(s):  
Robert Cuckler ◽  
Kuo-Hao Chang ◽  
Liam Y. Hsieh

We model and apply a stochastic-simulation-based methodology to optimize the machine allocation of a flexible flow shop (FFS) dedicated to integrated circuit (IC) packaging. This contrasts with most previous research on non-deterministic FFS problems wherein stochastic simulation is mostly used to estimate throughput, cycle time, delay cost, or some other measure(s) in order to compare the performances of already-existing heuristic-based algorithms. The methodology applied in this research, called progressive simulation metamodeling for IC Packaging (IC-PSO), while rooted in the traditional metamodeling technique known as Response Surface Methodology (RSM), contrasts with RSM in that it is equipped with well-designed mechanisms to ensure an ever-increasing solution quality in an attempt to achieve the desirable optimality. The computational efficiency that IC-PSO affords IC packaging companies is demonstrated via a numerical study. Meanwhile, an empirical study based on real data was conducted to validate the viability of the proposed methodology in real settings.


Author(s):  
Stanley J. Klima ◽  
Alex Vary

Radiographic, ultrasonic, scanning laser acoustic microscopy (SLAM), and thermo-acoustic microscopy techniques were used to characterize silicon nitride and silicon carbide modulus-of-rupture test specimens in various stages of fabrication. Conventional and microfocus x-ray techniques were found capable of detecting minute high density inclusions in as-received powders, green compacts, and fully densified specimens. Significant density gradients in sintered bars were observed by radiography, ultrasonic velocity, and SLAM. Ultrasonic attenuation was found sensitive to microstructural variations due to grain and void morphology and distribution. SLAM was also capable of detecting voids, inclusions, and cracks in finished test bars. Consideration is given to the potential for applying thermo-acoustic microscopy techniques to green and densified ceramics. The detection probability statistics and some limitations of radiography and SLAM also are discussed.


Sign in / Sign up

Export Citation Format

Share Document