The Flow Field Characteristic Correlated With Heat Transfer Performance in a Wide Channel With Staggered Circular Pin Fins

2021 ◽  
Author(s):  
Jingtian Duan ◽  
Ke Zhang ◽  
Jin Xu ◽  
Jiang Lei ◽  
Junmei Wu
Author(s):  
G. Rau ◽  
M. Çakan ◽  
D. Moeller ◽  
T. Arts

The local aerodynamic and heat transfer performance were measured in a rib-roughened square duct as a function of the rib pitch to beight ratio. The blockage ratio of these square obstacles was 10% or 20% depending on whether they were placed on one single (1s) or on two opposite walls (2s). The Reynolds number, based on the channel mean velocity and hydraulic diameter, was fixed at 30000. The aerodynamic description of the flow field was based on local pressure distributions along the ribbed and adjacent smooth walls as well as on 2D LDV explorations in the channel symmetry plane and in two planes parallel to the ribbed wall(s). Local heat transfer distributions were obtained on the floor, between the ribs, and on the adjacent smooth side wall. Averaged parameters, such as friction factor and averaged heat transfer enhancement factor, were calculated from the local results and compared to correlations given in literature. This contribution showed that simple correlations derived from the law of the wall similarity and from the Reynolds analogy could not be applied for the present rib height-to-channel hydraulic diameter ratio (e/Dh=0.1). The strong secondary flows resulted in a three-dimensional flow field with high gradients in the local heat transfer distributions on the smooth side walls.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Yongtong Li ◽  
Liang Gong ◽  
Minghai Xu ◽  
Yogendra Joshi

Abstract In this paper, a concept of metal foam heat sink with pin fins (MFPF heat sink) is proposed to improve the cooling performance of high-powered electronics with nonuniform heat flux. Numerical simulations are carried out to investigate the thermohydraulic performance of MFPF heat sink, and the metal foam (MF) heat sink and traditional pin fin (PF) heat sink are employed for comparison. The capability of MFPF heat sink in handling nonuniform heat flux is examined under different power levels. It indicates that the MFPF heat sink greatly enhances the heat transfer performance, due to the common effects of the improved flow distribution and enhanced overall effective thermal conductivity (ETC). Results also show that the MFPF heat sink promotes the improvement of the bottom wall temperature uniformity. Porosity has more pronounced effects on heat transfer performance of MFPF heat sink than pore density. A nonuniform distribution heat flux (15–80–15 W/cm2) can be successfully dissipated using the proposed MFPF heat sink with the junction temperature below 95 °C at Re of 500.


2001 ◽  
Vol 124 (2) ◽  
pp. 383-390 ◽  
Author(s):  
H. Honda ◽  
H. Takamastu ◽  
J. J. Wei

Experiments were conducted to study the effects of micro-pin-fins and submicron-scale roughness on the boiling heat transfer from a silicon chip immersed in a pool of degassed and gas-dissolved FC-72. Square pin-fins with fin dimensions of 50×50×60μm3 (width×thickness×height) and submicron-scale roughness (RMS roughness of 25 to 32 nm) were fabricated on the surface of square silicon chip 10×10×0.5mm3 by use of microelectronic fabrication techniques. Experiments were conducted at the liquid subcoolings of 0, 3, 25, and 45 K. Both the micro-pin-finned chip and the chip with submicron-scale roughness showed a considerable heat transfer enhancement as compared to a smooth chip in the nucleate boiling region. The chip with submicron-scale roughness showed a higher heat transfer performance than the micro-pin-finned chip in the low-heat-flux region. The micro-pin-finned chip showed a steep increase in the heat flux with increasing wall superheat. This chip showed a higher heat transfer performance than the chip with submicron-scale roughness in the high-heat-flux region. The micro-pin-finned chip with submicron-scale roughness on it showed the highest heat transfer performance in the high-heat-flux region. While the wall superheat at boiling incipience was strongly dependent on the dissolved gas content, it was little affected by the liquid subcooling.


1998 ◽  
Vol 120 (2) ◽  
pp. 368-375 ◽  
Author(s):  
G. Rau ◽  
M. C¸akan ◽  
D. Moeller ◽  
T. Arts

The local aerodynamic and heat transfer performance were measured in a rib-roughened square duct as a function of the rib pitch to height ratio. The blockage ratio of these square obstacles was 10 or 20 percent depending on whether they were placed on one single (1s) or on two opposite walls (2s). The Reynolds number, based on the channel mean velocity and hydraulic diameter, was fixed at 30,000. The aerodynamic description of the flow field was based on local pressure distributions along the ribbed and adjacent smooth walls as well as on two-dimensional LDV explorations in the channel symmetry plane and in two planes parallel to the ribbed wall(s). Local heat transfer distributions were obtained on the floor, between the ribs, and on the adjacent smooth side wall. Averaged parameters, such as friction factor and averaged heat transfer enhancement factor, were calculated from the local results and compared to correlations given in literature. This contribution showed that simple correlations derived from the law of the wall similarity and from the Reynolds analogy could not be applied for the present rib height-to-channel hydraulic diameter ratio (e/Dh = 0.1). The strong secondary flows resulted in a three-dimensional flow field with high gradients in the local heat transfer distributions on the smooth side walls.


Author(s):  
Ann M. Anderson ◽  
David M. Chapin

The objective of this study was to characterize the heat transfer performance of a dimpled surface in an impinging jet flow field. Using a statistical design of experiments approach we designed 8 (23) test plates to study the effects of dimple spacing, dimple depth and dimple diameter and compared them to smooth plate heat transfer. The plates were placed opposite a square jet and tests were run for Reynolds numbers based on jet hydraulic diameter of 10,000 to 30,000 at a range of jet to plate spacings. Plate averaged heat transfer coefficients, based on actual surface area (including dimple area) were measured under steady state conditions. The results show that the dimple spacing to diameter ratio has the most significant effect on heat transfer performance at high velocities, while the dimple depth to diameter ratio is more significant at lower velocities. The effect of dimple diameter was found to be significant only under poor heat transfer conditions. Particle Image Velocimetry images of the dimple surface flow field showed enhanced entrainment at high velocities which may explain why the dimple spacing to diameter effect is more significant at high velocities.


Sign in / Sign up

Export Citation Format

Share Document