Soft-Body Simulation With CUDA Based on Mass-Spring Model and Verlet Integration Scheme

2021 ◽  
Author(s):  
Zhou Zhang
2012 ◽  
Vol 157-158 ◽  
pp. 1167-1172
Author(s):  
Cheong Hou Yew ◽  
Khairul Salleh Mohamed Sahari ◽  
Cai Yin Gan

This paper presents a mass-spring model applied in the manipulation of elastic deformable object for home service robot application. In this paper, we present a system used to fold a piece of rectangular cloth from a specific initial condition using robot. The cloth is modeled as a 3D object in a 2D quadrangular mesh based on a mass-spring system and its state is estimated using an explicit integration scheme that computes the particle position as a function of internal and external forces acting on the elastic deformable object. The state of the elastic deformable object under robot manipulation is currently tracked from the trajectory of the mass points in the mass-spring system model in a self developed simulator, which integrates a mass-spring model and a 5 DOF articulated robotic arm. To test the reliability of the model, the simulator is used to predict the best possible paths for the robotic arm to fold a rectangular cloth in two. In the test, the state of the object is derived from the model and then compared with practical experiment. Based on the test, the error is generally acceptable. Thus, this model can be used as an estimator for vision-based tracking on the state of an elastic deformable object for manipulation by home service robots.


2021 ◽  
Vol 16 ◽  
pp. 155892502110125
Author(s):  
Sha Sha ◽  
Anqi Geng ◽  
Yuqin Gao ◽  
Bin Li ◽  
Xuewei Jiang ◽  
...  

There are different kinds of geometrical models and physical models used to simulate weft knitted fabrics nowadays, such as loop models based on Pierce, piecewise function, spline curve, mass-spring model, and finite element analyses (FEA). Weft knitting simulation technology, including modeling and yarn reality, has been widely adopted in fabric structure designing for the manufacturer. The technology has great potentials in both industries and dynamic virtual display. The present article is aimed to review the current development of 3-D simulation technique for weft knitted fabrics.


Author(s):  
Salina Sulaiman ◽  
Tan Sing Yee ◽  
Abdullah Bade

Physically based models assimilate organ-specific material properties, thus they are suitable in developing a surgical simulation. This study uses mass spring model (MSM) to represent the human liver because MSM is a discrete model that is potentially more realistic than the finite element model (FEM). For a high-end computer aided medical technology such as the surgical simulator, the most important issues are to fulfil the basic requirement of a surgical simulator. Novice and experienced surgeons use surgical simulator for surgery training and planning. Therefore, surgical simulation must provide a realistic and fast responding virtual environment. This study focuses on fulfilling the time complexity and realistic of the surgical simulator. In order to have a fast responding simulation, the choice of numerical integration method is crucial. This study shows that MATLAB ode45 is the fastest method compared to 2nd ordered Euler, MATLAB ode113, MATLAB ode23s and MATLAB ode23t. However, the major issue is human liver consists of soft tissues. In modelling a soft tissue model, we need to understand the mechanical response of soft tissues to surgical manipulation. Any interaction between haptic device and the liver model may causes large deformation and topology change in the soft tissue model. Thus, this study investigates and presents the effect of varying mass, damping, stiffness coefficient on the nonlinear liver mass spring model. MATLAB performs and shows simulation results for each of the experiment. Additionally, the observed optimal dataset of liver behaviour is applied in SOFA (Simulation Open Framework Architecture) to visualize the major effect.


2013 ◽  
Vol 3 (3) ◽  
pp. 148-154
Author(s):  
SeonMin Hwang ◽  
HanKyung Yun ◽  
BokHee Song

Sign in / Sign up

Export Citation Format

Share Document