Experimental and Numerical Investigation of Natural Convection Heat Transfer From Horizontal Rectangular Plate Fin Pin Fin Arrays

2021 ◽  
Author(s):  
Narayan Sane ◽  
Sunil Dingare ◽  
Ratnakar Kulkarni
Author(s):  
Sunil V. Dingare ◽  
Narayan K. Sane ◽  
Ratnakar R. Kulkarni

Abstract Fins are commonly employed for cooling of electronic equipment, compressors, Internal Combustion engines and for heat exchange in various heat exchangers. In short fin (length to height ratio, L/H = 5) arrays used for natural convection cooling, a stagnation zone forms at the central portion and that portion is not effective for carrying away heat. An attempt is made to modify plate fin heat sink geometry (PFHS) by inserting pin fins in the channels formed between plate fins and a plate fin pin fin heat sink (PFPFHS) is constructed to address this issue. An experimental setup is developed to validate numerical model of PFPFHS. The three-dimensional elliptic governing equations were solved using a finite volume based computational fluid dynamics (CFD) code. Fluent 6.3.26, a finite volume flow solver is used for solving the set of governing equations for the present geometry. Cell count based on grid independence and extended domain is used to obtain numerical results. Initially, the numerical model is validated for PFHS cases reported in the literature. After obtaining a good agreement with results from the literature, the numerical model for PFHS is modified for PFPFHS and used to carry out systematic parametric study of PFPFHS to analyze the effects of parameters like fin spacing, fin height, pin fin diameter, number of pin fins and temperature difference between fin array and surroundings on natural convection heat transfer from PFPFHS. It is observed that it is impossible to obtain optimum performance in terms of overall heat transfer by only concentrating on one or two parameters. The interactions among all the design parameters must be considered. This thesis presents Experimental and Numerical study of natural convection heat transfer from horizontal rectangular plate fin and plate fin pin fin arrays. The parameters of study are fin spacing, temperature difference between the fin surface and ambient air, fin height, pin fin diameter, number of pin fins and method of positioning pin fins in the fin channel. Experimental set up is validated with horizontal plate standard correlations. Results are generated in the form of variation in average heat transfer coefficient (ha), base heat transfer coefficient (hb), average Nusselt number (Nua) and base Nusselt number (Nub). Total 512 cases are studied numerically and finally an attempt is made to correlate the Nusselt Number (Nu), Rayleigh Number (Ra), increase in percentage by inserting pin fins (% Area), ratios like spacing to height (S/H) and L/H obtained in the present study.


2013 ◽  
Vol 136 (2) ◽  
Author(s):  
Yanwei Hu ◽  
Yurong He ◽  
Shufu Wang ◽  
Qizhi Wang ◽  
H. Inaki Schlaberg

An experimental and numerical investigation on natural convection heat transfer of TiO2–water nanofluids in a square enclosure was carried out for the present work. TiO2–water nanofluids with different nanoparticle mass fractions were prepared for the experiment and physical properties of the nanofluids including thermal conductivity and viscosity were measured. Results show that both thermal conductivity and viscosity increase when increasing the mass fraction of TiO2 nanoparticles. In addition, the thermal conductivity of nanofluids increases, while the viscosity of nanofluids decreases with increasing the temperature. Nusselt numbers under different Rayleigh numbers were obtained from experimental data. Experimental results show that natural convection heat transfer of nanofluids is no better than water and even worse when the Rayleigh number is low. Numerical studies are carried out by a Lattice Boltzmann model (LBM) coupling the density and the temperature distribution functions to simulate the convection heat transfer in the enclosure. The experimental and numerical results are compared with each other finding a good match in this investigation, and the results indicate that natural convection heat transfer of TiO2–water nanofluids is more sensitive to viscosity than to thermal conductivity.


Sign in / Sign up

Export Citation Format

Share Document