Investigation of Strain Hardening in NiAl Single Crystals Using Three-Dimensional FEA Models

1999 ◽  
Vol 123 (1) ◽  
pp. 20-27 ◽  
Author(s):  
Chulho Yang ◽  
Ashok V. Kumar

Single crystals of NiAl are very ductile at intermediate temperatures (400–700 K) and were observed to exhibit high strain hardening rates at large strains when loaded in the [110] orientation. The experimentally observed strain hardening in NiAl single crystals could not be predicted using simple hardening models and two-dimensional finite element analysis. The primary slip systems that activate during the deformation are (010)[100] and (100)[100], however, it has been hypothesized that activation of secondary slip on {011} slip planes may be responsible for the high rate of hardening observed. The hardening of intermetallic single crystals when multiple slip systems are activated is not well understood. To study this further, a three-dimensional hardening model and constitutive equations were implemented into a finite element analysis program. Since the parameters required to describe the hardening model such as latent hardening ratios are difficult to obtain experimentally, a parametric study was conducted to estimate values for these parameters that enable the prediction of the experimentally observed load versus elongation curves.

Author(s):  
Yanbing Zhao ◽  
Haixiao Liu

With the application of innovative anchor concepts and advanced technologies in deepwater moorings, anchor behaviors in the seabed are becoming more complicated, such as 360 deg rotation of the anchor arm, gravity installation of anchors with high soil strain rate, and keying and diving (or penetration) of anchors. The anchor line connects the anchor and the anchor handling vessel (AHV) or floating moored platform. With moving of the AHV or platform, anchor line produces a space movement, and forms a reverse catenary shape and even a three-dimensional (3D) profile in the soil. Finite element analysis on the behaviors of anchor lines and deepwater anchors requires techniques that can deal with large strains and deformations of the soil, track changes in soil strength due to soil deformation, strain rate and strain softening effects, appropriately describe anchor–soil friction, and construct structures with connector elements to conform to their characteristics. This paper gives an overview of several key techniques in the coupled Eulerian–Lagrangian (CEL) analysis of comprehensive behaviors of deepwater anchors, including construction of the embedded anchor line and the anchor line in the water, installation of gravity installed anchors (GIAs), keying or diving of drag anchors, suction embedded plate anchors (SEPLAs) and GIAs, and implementation of the omni-directional arm of GIAs. Numerical probe tests and comparative studies are also presented to examine the robustness and accuracy of the proposed techniques. The aim of this paper is to provide an effective numerical framework to analyze the comprehensive behaviors of anchor lines and deepwater anchors.


Author(s):  
Yanbing Zhao ◽  
Haixiao Liu

With the application of innovative anchor concepts and advanced technologies in deepwater moorings, anchor behaviors in the seabed are becoming more complicated, such as 360-degree rotation of the anchor arm, gravity installation of anchors with high soil strain rate, and keying and diving (or penetration) of anchors. As a very important component of the installation or mooring system, anchor line connects the anchor and the anchor handling vessel (AHV) or floating moored platform. With moving of the AHV or platform, anchor line produces a space movement, and forms a reverse catenary shape and even a three-dimensional profile in the soil. Numerical analysis on the behaviors of anchor lines and deepwater anchors requires techniques that can deal with large strains and deformations of the soil, track changes in soil strength due to soil deformation, strain rate and strain softening effects, appropriately describe anchor-soil friction, and construct structures with connector elements to conform to their characteristics. Being an effective tool of large deformation finite element analysis, the coupled Eulerian-Lagrangian (CEL) method is advantageous in handling geotechnical problems with large deformations, where a traditional Lagrangian analysis is coupled with an Eulerian phase of material advection. This paper gives an overview of several key techniques in the CEL analysis of comprehensive behaviors of deepwater anchors, including construction of the embedded anchor line and the anchor line in the water, installation of gravity installed anchors (GIAs), keying or diving of drag anchors and GIAs, and implementation of the omni-directional arm of GIAs. Numerical probe tests and comparative studies are also presented to examine the robustness and accuracy of the proposed techniques. The aim of this paper is to provide a numerical framework to analyze the comprehensive behaviors of anchor lines and deepwater anchors.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


Sign in / Sign up

Export Citation Format

Share Document