On the General Solution for Piezothermoelasticity for Transverse Isotropy With Application

2000 ◽  
Vol 67 (4) ◽  
pp. 705-711 ◽  
Author(s):  
W. Q. Chen

This paper derives a general solution of the three-dimensional equations of transversely isotropic piezothermoelastic materials (crystal class, 6 mm). Two displacement functions are first introduced to simplify the basic equations and a general solution is then derived using the operator theory. For the static case, the proposed general solution is very simple in form and can be used easily in certain boundary value problems. An illustrative example is given in the paper by considering the symmetric crack problem of an arbitrary temperature applied over the faces of a flat crack in an infinite space. The governing integro-differential equations of the problem are derived. It is found that exact expressions for the piezothermoelastic field for a penny-shaped crack subject to a uniform temperature can be obtained in terms of elementary functions. [S0021-8936(00)01704-9]

1987 ◽  
Vol 54 (4) ◽  
pp. 854-860 ◽  
Author(s):  
N. Noda ◽  
F. Ashida

The present paper deals with a transient thermoelastic problem for an axisymmetric transversely isotropic infinite solid with a penny-shaped crack. A finite difference formulation based on the time variable alone is proposed to solve a three-dimensional transient heat conduction equation in an orthotropic medium. Using this formulation, the heat conduction equation reduces to a differential equation with respect to the spatial variables. This formulation is applied to attack the transient thermoelastic problem for an axisymmetric transversely isotropic infinite solid containing a penny-shaped crack subjected to heat absorption and heat exchange through the crack surface. Thus, the thermal stress field is analyzed by means of the transversely isotropic potential function method.


2001 ◽  
Vol 20 (6) ◽  
pp. 997-1005 ◽  
Author(s):  
Bao-Lin Wang ◽  
Naotake Noda ◽  
Jie-Cai Han ◽  
Shan-Yi Du

2006 ◽  
Vol 312 ◽  
pp. 41-46 ◽  
Author(s):  
Bao Lin Wang ◽  
Yiu Wing Mai

This paper solves the penny-shaped crack configuration in transversely isotropic solids with coupled magneto-electro-elastic properties. The crack plane is coincident with the plane of symmetry such that the resulting elastic, electric and magnetic fields are axially symmetric. The mechanical, electrical and magnetical loads are considered separately. Closed-form expressions for the stresses, electric displacements, and magnetic inductions near the crack frontier are given.


1967 ◽  
Vol 34 (2) ◽  
pp. 431-436 ◽  
Author(s):  
T. E. Smith

Using the techniques employed in developing a Papkovich-Neuber representation for the displacement vector in classical elasticity, a particular integral of the kinematical equations of equilibrium for the uncoupled theory of electrostriction is developed. The particular integral is utilized in conjunction with the displacement potential function approach to problems of the theory of elasticity to obtain closed-form solutions of several stress concentration problems for elastic dielectrics. Under a prescribed uniform electric field at infinity, the problems of an infinite elastic dielectric having first a spherical cavity and then a rigid spherical inclusion are solved. The rigid spheroidal inclusion problem and the penny-shaped crack problem are also solved for the case where the prescribed field is parallel to their axes of revolution.


1984 ◽  
Vol 51 (4) ◽  
pp. 811-815 ◽  
Author(s):  
Y. M. Tsai

The stress distribution produced by the identation of a penny-shaped crack by an oblate smooth spheroidal rigid inclusion in a transversely isotropic medium is investigated using the method of Hankel transforms. This three-part mixed boundary value problem is solved using the techniques of triple integral equations. The normal contact stress between the crack surface and the indenter is written as the product of the associated half-space contact stress and a nondimensional crack-effect correction function. An exact expression for the stress-intensity is obtained as the product of a dimensional quantity and a nondimensional function. The curves for these nondimensional functions are presented and used to determine the values of the normalized stress-intensity factor and the normalized maximum contact stress. The stress-intensity factor is shown to be dependent on the material constants and increasing with increasing indentation. The stress-intensity factor also increases if the radius of curvature of the indenter surface increases.


Sign in / Sign up

Export Citation Format

Share Document