Application of an Optimal Control Synthesis Strategy to an Electro-Hydraulic Positioning System

2000 ◽  
Vol 123 (3) ◽  
pp. 377-384 ◽  
Author(s):  
Richard D. Abbott ◽  
Timothy W. McLain ◽  
Randal W. Beard

Successive Galerkin Approximation (SGA) provides a means for approximating solutions to the Hamilton-Jacobi-Bellman (HJB) equation. The SGA strategy is applied to the development of optimal control laws for an electro-hydraulic positioning system (EHPS) having nonlinear dynamics. The theory underlying the SGA strategy is developed. Equations of motion for an EHPS are presented and simulation results are compared with those obtained experimentally. Results demonstrating the experimental application of the SGA synthesis strategy to an EHPS under a variety of operating conditions are presented. These results are compared to those obtained from a linear quadratic regulator developed from linearized model equations.

Author(s):  
P. G. Huang ◽  
D. B. Doman

The effect of fuel topology and control on thermal endurance of aircraft using fuel as a heat transfer agent was studied using an optimal dynamic solver (OPT). The dynamic optimal solutions of the differential equations governing the heat transfer of recirculated fuel flows for single- and dual-tank arrangements were obtained. The method can handle sudden jumps of operating conditions across different operating zones during mission and/or situations when control parameters have reached their physical limits. Although this method is robust in providing an optimal control strategy to prolong thermal endurance of aircrafts, it is not ideal for practical application because the method required iterative procedures to solve expensive nonlinear equations. The linear quadratic regulator (LQR), the feedback controller, can be derived by linearizing the adjoint equations at trim points to offer a simple control strategy, which can then be implemented directly in the feedback control hardware. The solutions obtained from both OPT and LQR were compared, and it was found two solutions were almost identical except in regions having sudden jump of operation conditions. Finally, a comparison between single- and dual-tank arrangements was made to demonstrate the importance of the flow topology. The study shows the dual-tank arrangement allows flexibility in how energy is managed and can release energy faster than a single-tank topology and hence provides improved aircraft thermal endurance.


2015 ◽  
Vol 74 (9) ◽  
Author(s):  
Maziyah Mat Noh ◽  
M. R. Arshad ◽  
Rosmiwati Mohd-Mokhtar

This paper presents the controller tracking performance of Underwater Glider. The controllers are designed based on linearised model. The equations of motion are restricted to longitudinal plane. The controllers are designed and tested for the glide path moving from 45° to 30° downward and upward. The model is linearised using Taylor’s series expansion linearisation method. The controller developed here is Sliding Mode Control (SMC), and Linear Quadratic Regulator (LQR). The performance of both controllers are compared and analysed. The simulations show SMC produce better performance with about over 30% faster than LQR based its convergence time.


2013 ◽  
Vol 330 ◽  
pp. 598-601
Author(s):  
Guo Chun Sun ◽  
Li Meng He

In this work, a new active mount featuring piezostack actuators and a rubber element is proposed and applied to a vibration control system. After describing the configuration and operating principle of the proposed mount, an appropriate rubber element and appropriate piezostacks are designed. Through the analysis of the property of the rubber and piezoelectric stack actuator, a mechanical model of the active vibration isolation system with the active mounts is established. An optimal control algorithm is presented for engine vibration isolation system. the controller is designed according to linear quadratic regulator (LQR) theory. Simulation shows the active system has a better consequence in reducing the vibration of the chassis significantly with respect to the ACM and the optimal control than that in the passive system.


2011 ◽  
Vol 345 ◽  
pp. 46-52 ◽  
Author(s):  
Jun Qiang Lou ◽  
Yan Ding Wei

This paper concerns the dynamic modeling and vibration control of a space two-link flexible manipulator. Two types of PZT actuators, PZT shear actuator and torsional actuator, are used to suppress the bending-torsional-coupled vibration of the space manipulator. Using extended Hamilton’s principle and the finite element method, equations of motion of the space flexible manipulator with PZT actuators and tip mass are obtained. Based on modal analyze theory, the state space model of the system is then used to design the control system. A linear quadratic regulator (LQR) controller is designed to achieve vibration suppression of the space manipulator system. From the numerical results, we can get that the proposed controller has a suitable and efficient performance suppressing the bending-torsional-coupled vibration of the space two-link flexible manipulator.


2016 ◽  
Vol 44 ◽  
pp. 02064
Author(s):  
Huan Xin Cheng ◽  
Jun Xi Chen ◽  
Jing Li ◽  
Li Cheng

Author(s):  
Huyao Wu ◽  
Bin Ran

Abstract In this paper, the control strategies for Path Following System (PFS) in autonomous vehicle, which lets vehicle stay in the center of its lane is discussed, we will create a plant mechanical, mathematical and error dynamics model for the study of PFS, which is stabilized by the state-feedback control law, also considers the output where the sensor is made. We apply mainly an optimal control or configure a Linear-quadratic Regulator (LQR) for state space systems and compare it to that based on the Pole Assignment (PA). Combined with a typical operating scenario of the road, we mainly consider static and dynamic errors in the moving process, and how intensely the error fluctuates and how errors are related to the next time. Figures and data show that the LQR controller successfully adjusts and gives appropriate input to let the vehicle approach to centerline, errors and the steering angle required to negotiate a curved road are presented and analyzed, finally relevant conclusions are drawn.


Sign in / Sign up

Export Citation Format

Share Document