quadratic problem
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 16)

H-INDEX

14
(FIVE YEARS 1)

Author(s):  
Gabriele Eichfelder ◽  
Patrick Groetzner

AbstractIn a single-objective setting, nonconvex quadratic problems can equivalently be reformulated as convex problems over the cone of completely positive matrices. In small dimensions this cone equals the cone of matrices which are entrywise nonnegative and positive semidefinite, so the convex reformulation can be solved via SDP solvers. Considering multiobjective nonconvex quadratic problems, naturally the question arises, whether the advantage of convex reformulations extends to the multicriteria framework. In this note, we show that this approach only finds the supported nondominated points, which can already be found by using the weighted sum scalarization of the multiobjective quadratic problem, i.e. it is not suitable for multiobjective nonconvex problems.


Author(s):  
Hao Hu ◽  
Renata Sotirov

AbstractWe provide several applications of the linearization problem of a binary quadratic problem. We propose a new lower bounding strategy, called the linearization-based scheme, that is based on a simple certificate for a quadratic function to be non-negative on the feasible set. Each linearization-based bound requires a set of linearizable matrices as an input. We prove that the Generalized Gilmore–Lawler bounding scheme for binary quadratic problems provides linearization-based bounds. Moreover, we show that the bound obtained from the first level reformulation linearization technique is also a type of linearization-based bound, which enables us to provide a comparison among mentioned bounds. However, the strongest linearization-based bound is the one that uses the full characterization of the set of linearizable matrices. We also present a polynomial-time algorithm for the linearization problem of the quadratic shortest path problem on directed acyclic graphs. Our algorithm gives a complete characterization of the set of linearizable matrices for the quadratic shortest path problem.


Author(s):  
ramzi kasri ◽  
fatima bellahcene

In this paper we suggest an approach for solving a multiobjective stochastic linear programming problem with normal multivariate distributions. Our solution method is a combination between the multiobjective approach and a nonconvex technique. The problem is first transformed into a deterministic multiobjective problem introducing the expected value criterion and an utility function that represents the decision makers’ preferences. The obtained problem is reduced to a mono-objective quadratic problem using a weighting method. This last problem is solved by DC programming and DC algorithm. A numerical example is included for illustration.


2021 ◽  
Vol 31 (7) ◽  
pp. 2737-2761
Author(s):  
Binbin Si ◽  
Yuan‐Hua Ni ◽  
Qinglin Sun ◽  
Zengqiang Chen

2021 ◽  
Vol 6 (3) ◽  
pp. 213
Author(s):  
Jian Song ◽  
Meng Wang

<p style='text-indent:20px;'>We consider the stochastic optimal control problem for the dynamical system of the stochastic differential equation driven by a local martingale with a spatial parameter. Assuming the convexity of the control domain, we obtain the stochastic maximum principle as the necessary condition for an optimal control, and we also prove its sufficiency under proper conditions. The stochastic linear quadratic problem in this setting is also discussed.</p>


Sign in / Sign up

Export Citation Format

Share Document