Simulation of Progressive Deformities in Adolescent Idiopathic Scoliosis Using a Biomechanical Model Integrating Vertebral Growth Modulation

2002 ◽  
Vol 124 (6) ◽  
pp. 784-790 ◽  
Author(s):  
I. Villemure ◽  
C. E´. Aubina ◽  
J. Dansereau ◽  
H. Labelle

While the etiology and pathogenesis of adolescent idiopathic scoliosis are still not well understood, it is generally recognized that it progresses within a biomechanical process involving asymmetrical loading of the spine and vertebral growth modulation. This study intends to develop a finite element model incorporating vertebral growth and growth modulation in order to represent the progression of scoliotic deformities. The biomechanical model was based on experimental and clinical observations, and was formulated with variables integrating a biomechanical stimulus of growth modulation along directions perpendicular (x) and parallel (y, z) to the growth plates, a sensitivity factor β to that stimulus and time. It was integrated into a finite element model of the thoracic and lumbar spine, which was personalized to the geometry of a female subject without spinal deformity. An imbalance of 2 mm in the right direction at the 8th thoracic vertebra was imposed and two simulations were performed: one with only growth modulation perpendicular to growth plates (Sim1), and the other one with additional components in the transverse plane (Sim2). Semi-quantitative characterization of the scoliotic deformities at each growth cycle was made using regional scoliotic descriptors (thoracic Cobb angle and kyphosis) and local scoliotic descriptors (wedging angle and axial rotation of the thoracic apical vertebra). In all simulations, spinal profiles corresponded to clinically observable configurations. The Cobb angle increased non-linearly from 0.3° to 34° (Sim1) and 20° (Sim2) from the first to last growth cycle, adequately reproducing the amplifying thoracic scoliotic curve. The sagittal thoracic profile (kyphosis) remained quite constant. Similarly to clinical and experimental observations, vertebral wedging angle of the thoracic apex progressed from 2.6° to 10.7° (Sim1) and 7.8° (Sim2) with curve progression. Concomitantly, vertebral rotation of the thoracic apex increased of 10° (Sim1) and 6° (Sim2) clockwise, adequately reproducing the evolution of axial rotation reported in several studies. Similar trends but of lesser magnitude (Sim2) suggests that growth modulation parallel to growth plates tend to counteract the growth modulation effects in longitudinal direction. Overall, the developed model adequately represents the self-sustaining progression of vertebral and spinal scoliotic deformities. This study demonstrates the feasibility of the modeling approach, and compared to other biomechanical studies of scoliosis it achieves a more complete representation of the scoliotic spine.

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0243736
Author(s):  
Alexander T. D. Grünwald ◽  
Susmita Roy ◽  
Ana Alves-Pinto ◽  
Renée Lampe

Adolescent idiopathic scoliosis, is a three-dimensional spinal deformity characterized by lateral curvature and axial rotation around the vertical body axis of the spine, the cause of which is yet unknown. The fast progression entails regular clinical monitoring, including X-rays. Here we present an approach to evaluate scoliosis from the three-dimensional image of a patient’s torso, captured by an ionizing radiation free body scanner, in combination with a model of the ribcage and spine. A skeletal structure of the ribcage and vertebral column was modelled with computer aided designed software and was used as an initial structure for macroscopic finite element method simulations. The basic vertebral column model was created for an adult female in an upright position. The model was then used to simulate the patient specific scoliotic spine configurations. The simulations showed that a lateral translation of a vertebral body results in an effective axial rotation and could reproduce the spinal curvatures. The combined method of three-dimensional body scan and finite element model simulations thus provide quantitative anatomical information about the position, rotation and inclination of the thoracic and lumbar vertebrae within a three-dimensional torso. Furthermore, the simulations showed unequal distributions of stress and strain profiles across the intervertebral discs, due to their distortions, which might help to further understand the pathogenesis of scoliosis.


2015 ◽  
Vol 3 (1) ◽  
pp. 4-11 ◽  
Author(s):  
Claudio Vergari ◽  
Gwenael Ribes ◽  
Benjamin Aubert ◽  
Clayton Adam ◽  
Lotfi Miladi ◽  
...  

Author(s):  
Héctor E Jaramillo S

The annulus fibrosus has substantial variations in its geometrical properties (among individuals and between levels), and plays an important role in the biomechanics of the spine. Few works have studied the influence of the geometrical properties including annulus area, anterior / posterior disc height, and over the range of motion, but in general these properties have not been reported in the finite element models. This paper presents a probabilistic finite element analyses (Abaqus 6.14.2) intended to assess the effects of the average disc height ( hp) and the area ( A) of the annulus fibrosus on the biomechanics of the lumbar spine. The annulus model was loaded under flexion, extension, lateral bending, and axial rotation and analyzed for different combinations of hpand A in order to obtain their effects over the range of motion. A set of 50 combinations of hp(mean = 18.1 mm, SD = 3.5 mm) and A (mean = 49.8%, SD = 4.6%) were determined randomly according to a normal distribution. A Yeoh energy function was used for the matrix and an exponential function for the fibers. The range of motion was more sensitive to hpthan to A. With regard to the range of motion the segment was more sensitive in the following order: flexion, axial rotation, extension, and lateral bending. An increase of the hpproduces an increase of the range of motion, but this decreases when A increases. Comparing the range of motion with the experimental data, on average, 56.0% and 73.0% of the total of data were within the experimental range for the L4–L5 and L5–S1 segments, respectively. Further, an analytic equation was derived to obtain the range of motion as a function of the hpand A. This equation can be used to calibrate a finite element model of the spine segment, and also to understand the influence of each geometrical parameter on the range of motion.


Sign in / Sign up

Export Citation Format

Share Document