body scanner
Recently Published Documents


TOTAL DOCUMENTS

203
(FIVE YEARS 29)

H-INDEX

19
(FIVE YEARS 1)

Author(s):  
Mong Hien Thi Nguyen ◽  
◽  
Minh Hieu Tran ◽  

This paper presents the research results of automatic estimation of the neck girth and inside leg to extract the size and body shape from the male sizing system table. The data used in the study is the 3D scan file *.obj from the 3D body scanner. The author uses the interpolation and optimization method in the algorithm to automatically extract 2 primary dimensions combined with the fuzzy logic method to extract sizes, body shapes. Besides, rotate matrix method combines with the optimal function used to write an algorithm to estimate the neck girth, inside leg measurements. Furthermore, a simple approach based on vertices and surface normal vectors data and optimal search was adapted to estimate the neck girth and inside leg measurements. These extraction results will be linked to the algorithm of the fuzzy logic to run for the automated process. This automatic algorithm will be very useful in face-to-face clothing purchases or online or for garment manufacturers in reducing shopping time and choosing sizes to design samples for customers.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Stan Majewski

Abstract In this partial review and partial attempt at vision of what may be the future of dedicated brain PET scanners, the key implementations of the PET technique, we postulate that we are still on a development path and there is still a lot to be done in order to develop optimal brain imagers. Optimized for particular imaging tasks and protocols, and also mobile, that can be used outside the PET center, in addition to the expected improvements in sensitivity and resolution. For this multi-application concept to be more practical, flexible, adaptable designs are preferred. This task is greatly facilitated by the improved TOF performance that allows for more open, adjustable, limited angular coverage geometries without creating image artifacts. As achieving uniform very high resolution in the whole body is not practical due to technological limits and high costs, hybrid systems using a moderate-resolution total body scanner (such as J-PET) combined with a very high performing brain imager could be a very attractive approach. As well, as using magnification inserts in the total body or long-axial length imagers to visualize selected targets with higher resolution. In addition, multigamma imagers combining PET with Compton imaging should be developed to enable multitracer imaging.


Author(s):  
Jonathan P. Bennett ◽  
Yong En Liu ◽  
Brandon K. Quon ◽  
Nisa N. Kelly ◽  
Michael C. Wong ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Eva Lindell ◽  
Hanna Tingsvik ◽  
Li Guo ◽  
Joel Peterson

Abstract Every year, approximately 3,000 people in Sweden undergo amputation of a body part. The use of a prosthesis can greatly improve the quality of life for these people. To improve the fit and comfort of a prosthesis, a sock is used as an interface between the prosthesis socket and the stump. A three-dimensional (3D) body scanner can be used to take measurements that are used to produce individualized socks that improve fit and comfort. The standardized method for taking measurements with a 3D body scanner often requires a standing position and hence a new scanning method is needed to improve the accessibility for 3D body scanning. This study aimed to create a scanning scenario and an algorithm for scanning amputation stumps for individualizing prosthesis socks for upper-body amputations. Vitronic VITUSSMART LC 3D Body Scanner was used in this study. The results show a seated position with arms slightly away from the body, scanned at 45° as the best. To measure the right upper arm and the left armpit, the best was to scan at a 315° angle. Paired t-tests showed no significant differences compared with the 3D body scanner of traditional manual measurements. The proposed method exhibited good relative reliability and potential to facilitate the customization of prosthetic socks for amputees.


Author(s):  
Jacki Pritchard
Keyword(s):  

Author(s):  
Lorena Rumbo-Rodríguez ◽  
Miriam Sánchez-SanSegundo ◽  
Rosario Ferrer-Cascales ◽  
Nahuel García-D’Urso ◽  
Jose A. Hurtado-Sánchez ◽  
...  

Anthropometrics are a set of direct quantitative measurements of the human body’s external dimensions, which can be used as indirect measures of body composition. Due to a number of limitations of conventional manual techniques for the collection of body measurements, advanced systems using three-dimensional (3D) scanners are currently being employed, despite being a relatively new technique. A systematic review was carried out using Pubmed, Medline and the Cochrane Library to assess whether 3D scanners offer reproducible, reliable and accurate data with respect to anthropometrics. Although significant differences were found, 3D measurements correlated strongly with measurements made by conventional anthropometry, dual-energy X-ray absorptiometry (DXA) and air displacement plethysmography (ADP), among others. In most studies (61.1%), 3D scanners were more accurate than these other techniques; in fact, these scanners presented excellent accuracy or reliability. 3D scanners allow automated, quick and easy measurements of different body tissues. Moreover, they seem to provide reproducible, reliable and accurate data that correlate well with the other techniques used.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Moudi Almousa

Purpose The purpose of this paper was to develop the first standard apparel sizing system for Saudi adult female population originating from anthropometric study using three-dimensional (3D) body scanner. Design/methodology/approach An anthropometric survey was conducted in four regions of the country where 1,074 participants between the ages of 18 and 63 were scanned using white light 3D body scanner. K-means cluster analysis using stature and hip girth as control variables produced the proposed sizing system, whereas regression equations were used to determine the parameters between measurements of different sizes. Findings Three sizing groups with 12 size designations in each totalling 36 size designations were identified. The sizing charts developed in this study show that key girth measurement ranges of chest, waist and hips are comparable to that of ISO standard and (ASTM D5585-11), while the Saudi female population falls into shorter height brackets than ISO and ASTM standards. Originality/value In this study, the first anthropometric database for Saudi female population was established using 3D body scanning technology, and a sizing system for this target population was developed.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0243736
Author(s):  
Alexander T. D. Grünwald ◽  
Susmita Roy ◽  
Ana Alves-Pinto ◽  
Renée Lampe

Adolescent idiopathic scoliosis, is a three-dimensional spinal deformity characterized by lateral curvature and axial rotation around the vertical body axis of the spine, the cause of which is yet unknown. The fast progression entails regular clinical monitoring, including X-rays. Here we present an approach to evaluate scoliosis from the three-dimensional image of a patient’s torso, captured by an ionizing radiation free body scanner, in combination with a model of the ribcage and spine. A skeletal structure of the ribcage and vertebral column was modelled with computer aided designed software and was used as an initial structure for macroscopic finite element method simulations. The basic vertebral column model was created for an adult female in an upright position. The model was then used to simulate the patient specific scoliotic spine configurations. The simulations showed that a lateral translation of a vertebral body results in an effective axial rotation and could reproduce the spinal curvatures. The combined method of three-dimensional body scan and finite element model simulations thus provide quantitative anatomical information about the position, rotation and inclination of the thoracic and lumbar vertebrae within a three-dimensional torso. Furthermore, the simulations showed unequal distributions of stress and strain profiles across the intervertebral discs, due to their distortions, which might help to further understand the pathogenesis of scoliosis.


Sign in / Sign up

Export Citation Format

Share Document