Dynamic Stiffness Formulation and Its Application for a Combined Beam and a Two Degree-of-Freedom System

2003 ◽  
Vol 125 (3) ◽  
pp. 351-358 ◽  
Author(s):  
J. R. Banerjee

This paper is concerned with the dynamic stiffness formulation and its application for a Bernoulli-Euler beam carrying a two degree-of-freedom spring-mass system. The effect of a two degree-of-freedom system kinematically connected to the beam is represented exactly by replacing it with equivalent stiffness coefficients, which are added to the appropriate stiffness coefficients of the bare beam. Numerical examples whose results are obtained by applying the Wittrick-Williams algorithm to the total dynamic stiffness matrix are given and compared with published results. Applications of the theory include the free vibration analysis of frameworks carrying two degree-of-freedom spring-mass systems.

Author(s):  
Valentin Fogang

This study presents an exact solution to the free vibration analysis of a uniform Timoshenko beam using an analytical approach, a harmonic vibration being assumed. The Timoshenko beam theory covers cases associated with small deflections based on shear deformation and rotary inertia considerations. In this paper, a moment-shear force-circular frequency-curvature relationship was presented. The complete study was based on this relationship and closed-form expressions of efforts and deformations were derived. The free vibration response of single-span systems, as well as that of spring-mass systems, was analyzed; closed-form formulations of matrices expressing the boundary conditions were presented and the natural frequencies were determined by solving the eigenvalue problem. Systems with intermediate mass, spring, or spring-mass system were also analyzed. Furthermore, first-order dynamic stiffness matrices in local coordinates were derived. Finally, second-order analysis of beams resting on an elastic Winkler foundation was conducted. The results obtained in this paper were in good agreement with those of other studies.


2013 ◽  
Vol 21 (01) ◽  
pp. 1250024
Author(s):  
NAM-IL KIM

The coupled free vibration analysis of the thin-walled laminated composite I-beams with bisymmetric and monosymmetric cross sections considering shear effects is developed. The laminated composite beam takes into account the transverse shear and the restrained warping induced shear deformation based on the first-order shear deformation beam theory. The analytical technique is used to derive the constitutive equations and the equations of motion of the beam in a systematic manner considering all deformations and their mutual couplings. The explicit expressions for displacement parameters are presented by applying the power series expansions of displacement components to simultaneous ordinary differential equations. Finally, the dynamic stiffness matrix is determined using the force–displacement relationships. In addition, for comparison, a finite beam element with two-nodes and fourteen-degrees-of-freedom is presented to solve the equations of motion. The performance of the dynamic stiffness matrix developed by study is tested through the solutions of numerical examples and the obtained results are compared with results available in literature and the detailed three-dimensional analysis results using the shell elements of ABAQUS. The vibrational behavior and the effect of shear deformation are investigated with respect to the modulus ratios and the fiber angle change.


Sign in / Sign up

Export Citation Format

Share Document