An Exact Solution to the Free Vibration Analysis of a Uniform Timoshenko Beam Using an Analytical Approach
This study presents an exact solution to the free vibration analysis of a uniform Timoshenko beam using an analytical approach, a harmonic vibration being assumed. The Timoshenko beam theory covers cases associated with small deflections based on shear deformation and rotary inertia considerations. In this paper, a moment-shear force-circular frequency-curvature relationship was presented. The complete study was based on this relationship and closed-form expressions of efforts and deformations were derived. The free vibration response of single-span systems, as well as that of spring-mass systems, was analyzed; closed-form formulations of matrices expressing the boundary conditions were presented and the natural frequencies were determined by solving the eigenvalue problem. Systems with intermediate mass, spring, or spring-mass system were also analyzed. Furthermore, first-order dynamic stiffness matrices in local coordinates were derived. Finally, second-order analysis of beams resting on an elastic Winkler foundation was conducted. The results obtained in this paper were in good agreement with those of other studies.