stiffness coefficients
Recently Published Documents


TOTAL DOCUMENTS

316
(FIVE YEARS 52)

H-INDEX

25
(FIVE YEARS 4)

2022 ◽  
Vol 120 ◽  
pp. 103054
Author(s):  
Shuai Yin ◽  
YuZhou Xiang ◽  
Jun Xu ◽  
Hui Cheng ◽  
YueWen Jiang ◽  
...  

2021 ◽  
pp. 095745652110557
Author(s):  
Yong Chen ◽  
Mian Jiang ◽  
Daoyong Wang ◽  
Kuanfang He

The mass variances of materials in buckets and the movements of excavation arms greatly impact powertrain vibration transmissibility in hydraulic excavators under working conditions. If the influence of mass variation among bucket contents and excavation arm motions on vibration transmissibility is not considered, then only limited improvements can be made to vibration isolation performance. In this paper, vibration transmissibility suppression for hydraulic excavators operating under working conditions were studied via multi-objective optimization for stiffness coefficients of suspension elements (SEs). First, the rigid-flexible coupling model of a hydraulic excavator with a flexible base was built using ADAMS software. In the model, the stiffness coefficients of the SEs were the targeted variables with constrained conditions, while the multi-objectives for optimization were the vibration transmissibility and energy decoupling rates of the powertrain. Vibration isolation transmissibility (VIT) of the mounting system was compared between situations with non-optimized and optimized stiffness coefficients. Finally, the amplitude changes of the resultant SE support forces were used to illustrate the effects of powertrain vibration transmissibility suppression. We found that the average value of VITs increases significantly during the optimization process for the stiffness coefficients of SEs, which indicates that the mounting system has better vibration isolation performance. The smaller amplitudes of the resultant support force illustrate the improvements to the performance of vibration transmissibility suppression of the powertrain via the optimization process.


2021 ◽  
Vol 31 (3) ◽  
pp. 430-448
Author(s):  
Sergey Yu. Zhachkin ◽  
Anatoliy I. Zavrazhnov ◽  
Nikita A. Penkov ◽  
Alexei V. Martynov ◽  
Roman N. Zadorozhny

Introduction. To keep automobiles and tractors in operation conditions, it is necessary to restore the inner cylindrical surfaces of the friction pair parts. This is the most laborintensive activity. The method of electroplated contact deposition of composite coatings, based on elastic plastic deformation of formed layers, is used for repairing surfaces. To use this method it is necessary to determine the values of the elasticity modulus, on which the wear resistance of tribocouplings depends. Materials and Methods. For the study, cylindrical samples made of 30 HGSA and 30 HGSNA steels were used. Electrolyte containing 200–250 g/l chromium oxide, 2.0–2.5 g/l sulfuric acid, and distilled water was used for electroplating the coatings. When calculating the stress-strain state, the apparatus of continuum mechanics was used. Results. The dependence of the coating pliability as a function of the parameters of individual elementary layers is determined. When the multilayer coating of three types (orthogonal-reinforced, cross-reinforced and quasi-isotropic) is applied, its structure does not depend on the angles of kinematic tool movement on the inner cylindrical surface of the part. For each type of coatings, the way to determine the constant stiffness coefficients of the layers is specified. The dependences for calculating the elasticity modulus of the applied material are derived from the values of the stiffness coefficients. Discussion and Conclusion. In determining the modulus of elasticity of multilayered composite coatings, the calculation is made for the individual layers by passing to the convective coordinates, which is in complete agreement with the Lagrange point of view on the study of the motion of a continuous medium. The results obtained are of practical significance in the selection of the coating material to be applied for the restoration of internal cylindrical surfaces.


Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1095
Author(s):  
Bohdan Mytsyk ◽  
Nataliya Demyanyshyn ◽  
Anatoliy Andrushchak ◽  
Oleh Buryy

All possible experimental geometries of the piezo-optic effect in crystals of trigonal symmetry are studied in detail through the interferometric technique, and the corresponding expressions for the calculation of piezo-optic coefficients (POCs) πim and some sums of πim based on experimental data obtained from the samples of direct and X/45°-cuts are given. The reliability of the values of POCs is proven by the convergence of πim obtained from different experimental geometries as well as by the convergence of some sums of POCs. Because both the signs and the absolute values of POCs π14 and π41 are defined by the choice of the right crystal-physics coordinate system, we here use the system whereby the condition S14 > 0 is fulfilled (S14 is an elastic compliance coefficient). The absolute value and the sign of S14 are determined by piezo-optic interferometric method from two experimental geometries. The errors of POCs are calculated as mean square values of the errors of the half-wave stresses and the elastic term. All components of the matrix of elasto-optic coefficients pin are calculated based on POCs and elastic stiffness coefficients. The technique is tested on LiTaO3 crystal. The obtained results are compared with the corresponding data for trigonal LiNbO3 and Ca3TaGa3Si2O14 crystals.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5064
Author(s):  
Vassil Jivkov ◽  
Ralitsa Simeonova ◽  
Petar Antov ◽  
Assia Marinova ◽  
Boryana Petrova ◽  
...  

In recent years, the furniture design trends include ensuring ergonomic standards, development of new environmentally friendly materials, optimised use of natural resources, and sustainably increased conversion of waste into value-added products. The circular economy principles require the reuse, recycling or upcycling of materials. The potential of reusing waste corrugated cardboard to produce new lightweight boards suitable for furniture and interior applications was investigated in this work. Two types of multi-layered panels were manufactured in the laboratory from corrugated cardboard and beech veneer, bonded with urea-formaldehyde (UF) resin. Seven types of end corner joints of the created lightweight furniture panels and three conventional honeycomb panels were tested. Bending moments and stiffness coefficients in the compression test were evaluated. The bending strength values of the joints made of waste cardboard and beech veneer exhibited the required strength for application in furniture constructions or as interior elements. The joints made of multi-layer panels with a thickness of 51 mm, joined by dowels, demonstrated the highest bending strength and stiffness values (33.22 N∙m). The joints made of 21 mm thick multi-layer panels and connected with Confirmat had satisfactory bending strength values (10.53 N∙m) and Minifix had the lowest strength values (6.15 N∙m). The highest stiffness values (327 N∙m/rad) were determined for the 50 mm thick cardboard honeycomb panels connected by plastic corner connector and special screw Varianta, and the lowest values for the joints made of 21 mm thick multi-layer panels connected by Confirmat (40 N∙m/rad) and Minifix (43 N∙m/rad), respectively. The application of waste corrugated cardboard as a structural material for furniture and interiors can be improved by further investigations.


2021 ◽  
Author(s):  
Vu Linh Nguyen ◽  
Chin-Hsing Kuo ◽  
Po Ting Lin

Abstract This paper presents the gravity balancing reliability and sensitivity analysis of robotic manipulators with uncertainties. The gravity balancing reliability of the robot is defined as the probability that the reduction torque ratio of the robot reduces below a specified threshold. This index is of great importance for assessing and guaranteeing the balancing performance of the robot in the presence of uncertainties in input parameters. In this work, the balancing design for an industrial robot using the gear-spring modules (GSMs) is proposed with the adoption of a simulation-based analysis of the gravity effect of the robot. The Monte Carlo Simulation (MCS) method with normally distributed variables (i.e., link dimensions, masses, and spring stiffness coefficients) is employed to analyze and simulate the reliability. A case study with an industrial robot is then given to illustrate the reliability performance and the sensibility of the uncertain parameters. It is found that the gravity balancing behavior is achieved even when the uncertainties are applied. The uncertainties could deteriorate the balancing performance when increasing the standard deviations by more than seven percent of their means. The dimensional parameters enjoy the most critical influence on the balancing performance.


2021 ◽  
Vol 11 (9) ◽  
pp. 4149
Author(s):  
Anton Petrochenkov ◽  
Aleksey Sal’nikov ◽  
Sergey Bochkarev ◽  
Pavel Ilyushin

An algorithm for constructing a dynamic analysis during the formation of a wave field of stand for testing turbines and the effect of the frequency interaction of the stand’s elements on the measurement of its magnitude is described. The research algorithm involves the use of theoretical solutions of nonlinear wave processes using linear oscillations, refined by experiments. The diagnostic model can determine the technical condition of the stand’s elements and also determine the causes of the discrepancies between the calculated and measured turbine power values. To clarify the stiffness coefficients between the stand’s elements, a modal analysis was used to obtain the range of their changes depending on the external dynamic load, which made it possible to assess the impact of changes in the frequency interaction conditions on the turbine power measurement at different test modes. The conditions for amplifying the amplitude of oscillations at their eigenfrequencies are obtained, and the value of the possible deviation of the expected power value at its measurement for specific modes of the turbine is calculated. The algorithm allows to estimate the dynamic state of the stand-in different research modes of turbines and give recommendations for reducing the level of frequency interaction.


2021 ◽  
Vol 9 (4) ◽  
pp. 429
Author(s):  
Wen-Long Lin ◽  
Zhen Wang ◽  
Fei Liu ◽  
Jiang-Tao Yi

Subjected to pre-load, spudcan foundations, widely utilized to support offshore jack-up rigs, may penetrate in a few diameters into soft clays before mobilizing sufficient resistance from soil. While its stress–strain behavior is known to be affected by the embedment condition and soil backflow, the small-strain calculation with wished-in-place assumption was previously adopted to analyze its elastic stiffness coefficients. This study takes advantage of a recently developed dual-stage Eulerian–Lagrangian (DSEL) technique to re-evaluate the elastic stiffness coefficients of spudcans after realistically modelling the deep, continuous spudcan penetration. A numerical parametric exercise is conducted to investigate the effects of strength non-homogeneity, embedment depths, and the spudcan’s size on the elastic stiffness. On these bases, an expression is provided such that the practicing engineers can conveniently factor the installation effects into the estimation of elastic stiffness coefficients of spudcans.


Sign in / Sign up

Export Citation Format

Share Document