Heat Transfer Coefficients on the Squealer Tip and Near Squealer Tip Regions of a Gas Turbine Blade

2003 ◽  
Vol 125 (4) ◽  
pp. 669-677 ◽  
Author(s):  
Jae Su Kwak ◽  
Je-Chin Han

Detailed heat transfer coefficient distributions on a squealer tip of a gas turbine blade were measured using a hue detection based transient liquid crystals technique. The heat transfer coefficients on the shroud and near tip regions of the pressure and suction sides of a blade were also measured. Tests were performed on a five-bladed linear cascade with a blow-down facility. The blade was a two-dimensional model of a first stage gas turbine rotor blade with a profile of a GE-E3 aircraft gas turbine engine rotor blade. The Reynolds number based on the cascade exit velocity and axial chord length of a blade was 1.1×106 and the total turning angle of the blade was 97.7 deg. The overall pressure ratio was 1.2 and the inlet and exit Mach number were 0.25 and 0.59, respectively. The turbulence intensity level at the cascade inlet was 9.7 percent. The heat transfer measurements were taken at the three different tip gap clearances of 1.0 percent, 1.5 percent, and 2.5 percent of blade span. Results showed that the overall heat transfer coefficients on the squealer tip were higher than that on the shroud surface and the near tip regions of the pressure and suction sides. Results also showed that the heat transfer coefficients on the squealer tip and its shroud were lower than that on the plane tip and shroud. However, the reductions of heat transfer coefficients near the tip regions of the pressure and suction sides were not remarkable.

Author(s):  
Jae Su Kwak ◽  
Je-Chin Han

Detailed heat transfer coefficient distributions on a squealer tip of a gas turbine blade were measured using a hue detection based transient liquid crystals technique. The heat transfer coefficients on the shroud and near tip region of the pressure and suction sides of a blade were also measured. Tests were performed on a five-bladed linear cascade with blow down facility. The blade was a 2-dimensional model of a first stage gas turbine rotor blade with a profile of a GE-E3 aircraft gas turbine engine rotor blade. The Reynolds number based on the cascade exit velocity and axial chord length of a blade was 1.1×106 and the total turning angle of the blade was 97.7°. The overall pressure ratio was 1.23 and the inlet and exit Mach number were 0.25 and 0.59, respectively. The turbulence intensity level at the cascade inlet was 9.7%. The heat transfer measurements were taken at the three different tip gap clearances of 1.0%, 1.5% and 2.5% of blade span. Results showed that the overall heat transfer coefficient on the squealer tip was higher than that on the shroud and the near tip region of the pressure and suction side. Results also showed that the heat transfer coefficients on the squealer tip and its shroud were lower than that on the plane tip and shroud, but the heat transfer coefficients on the near tip region of suction and pressure sides were higher for the squealer tip case.


2003 ◽  
Vol 125 (4) ◽  
pp. 648-657 ◽  
Author(s):  
Jae Su Kwak ◽  
Je-Chin Han

Experimental investigations were performed to measure the detailed heat transfer coefficients and film cooling effectiveness on the squealer tip of a gas turbine blade in a five-bladed linear cascade. The blade was a two-dimensional model of a first stage gas turbine rotor blade with a profile of the GE-E3 aircraft gas turbine engine rotor blade. The test blade had a squealer (recessed) tip with a 4.22% recess. The blade model was equipped with a single row of film cooling holes on the pressure side near the tip region and the tip surface along the camber line. Hue detection based transient liquid crystals technique was used to measure heat transfer coefficients and film cooling effectiveness. All measurements were done for the three tip gap clearances of 1.0%, 1.5%, and 2.5% of blade span at the two blowing ratios of 1.0 and 2.0. The Reynolds number based on cascade exit velocity and axial chord length was 1.1×106 and the total turning angle of the blade was 97.9 deg. The overall pressure ratio was 1.2 and the inlet and exit Mach numbers were 0.25 and 0.59, respectively. The turbulence intensity level at the cascade inlet was 9.7%. Results showed that the overall heat transfer coefficients increased with increasing tip gap clearance, but decreased with increasing blowing ratio. However, the overall film cooling effectiveness increased with increasing blowing ratio. Results also showed that the overall film cooling effectiveness increased but heat transfer coefficients decreased for the squealer tip when compared to the plane tip at the same tip gap clearance and blowing ratio conditions.


Author(s):  
Hasan Nasir ◽  
Srinath V. Ekkad ◽  
David M. Kontrovitz ◽  
Ronald S. Bunker ◽  
Chander Prakash

The present study explores the effects of gap height and tip geometry on heat transfer distribution over the tip surface of a HPT first stage rotor blade. The pressure ratio (inlet total pressure to exit static pressure for the cascade) used was 1.2, and the experiments were run in a blow-down test rig with a four-blade linear cascade. A transient liquid crystal technique was used to obtain the tip heat transfer distributions. Pressure measurements were made on the blade surface and on the shroud for different tip geometries and tip gaps to characterize the leakage flow and understand the heat transfer distributions. Two different tip gap-to-blade span ratio of 1% and 2.6% are investigated for a plane tip and a deep squealer with depth-to-blade span ratio of 0.0416. For a shallow squealer with depth-to-blade span ratio of 0.0104, only 1% gap-to-span ratio is considered. The presence of the squealer alters the tip gap flow field significantly and produces lower overall heat transfer coefficients. The effects of different partial squealer arrangements are also investigated for the shallow squealer depth. These simulate partial burning off of the squealer in real turbine blades. Results show that in some cases, partial burning of squealers along the pressure surface may be beneficial in terms of overall reduction in heat transfer coefficients over the tip surface compared to the plain tip.


2004 ◽  
Vol 126 (2) ◽  
pp. 221-228 ◽  
Author(s):  
Hasan Nasir ◽  
Srinath V. Ekkad ◽  
David M. Kontrovitz ◽  
Ronald S. Bunker ◽  
Chander Prakash

The present study explores the effects of gap height and tip geometry on heat transfer distribution over the tip surface of a HPT first-stage rotor blade. The pressure ratio (inlet total pressure to exit static pressure for the cascade) used was 1.2, and the experiments were run in a blow-down test rig with a four-blade linear cascade. A transient liquid crystal technique was used to obtain the tip heat transfer distributions. Pressure measurements were made on the blade surface and on the shroud for different tip geometries and tip gaps to characterize the leakage flow and understand the heat transfer distributions. Two different tip gap-to-blade span ratios of 1% and 2.6% are investigated for a plane tip, and a deep squealer with depth-to-blade span ratio of 0.0416. For a shallow squealer with depth-to-blade span ratio of 0.0104, only 1% gap-to-span ratio is considered. The presence of the squealer alters the tip gap flow field significantly and produces lower overall heat transfer coefficients. The effects of different partial squealer arrangements are also investigated for the shallow squealer depth. These simulate partial burning off of the squealer in real turbine blades. Results show that some partial burning of squealers may be beneficial in terms of overall reduction in heat transfer coefficients over the tip surface.


2001 ◽  
Vol 7 (6) ◽  
pp. 415-424 ◽  
Author(s):  
Hui Du ◽  
Srinath V. Ekkad ◽  
Je-Chin Han ◽  
C. Pang Lee

Detailed heat transfer coefficient and film effectiveness distributions over a gas turbine blade with film cooling are obtained using a transient liquid crystal image technique. The test blade has three rows of film holes on the leading edge and two rows each on the pressure and suction surfaces. A transient liquid crystal technique maps the entire blade midspan region, and helps provide detailed measurements, particularly near the film hole. Tests were performed on a five-blade linear cascade in a low-speed wind tunnel. The mainstream Reynolds number based on cascade exit velocity is5.3×105. Two different coolants (air andCo2) were used to simulate coolant density effect. Coolant blowing ratio was varied between 0.8 and 1.2 for air injection and 0.4–1.2 forCo2injection. Results show that film injection promotes earlier laminar-turbulent boundary layer transition on the suction surface and also enhances local heat transfer coefficients (up to 80%) downstream of injection. An increase in coolant blowing ratio produces higher heat transfer coefficients for both coolants. This effect is stronger immediately downstream of injection holes. Film effectiveness is highest at a blowing ratio of 0.8 for air injection and at a blowing ratio of 1.2 forCo2injection. Such detailed results will help provide insight into the film cooling phenomena on a gas turbine blade.


Author(s):  
Jae Su Kwak ◽  
Je-Chin Han

Experimental investigations were performed to measure the detailed heat transfer coefficients and film-cooling effectiveness on the squealer tip of a gas turbine blade in a five-bladed linear cascade. The blade was a 2-dimensional model of a first stage gas turbine rotor blade with a profile of the GE-E3 aircraft gas turbine engine rotor blade. The test blade had a squealer (recessed) tip with a 4.22% recess. The blade model was equipped with a single row of film-cooling holes on the pressure-side near the tip region and the tip surface along the camber line. A hue detection based transient liquid crystal technique was used to measure heat transfer coefficients and film-cooling effectiveness. All measurements were done for the tip gap clearances of 1.0%,1.5%, and 2.5% of blade span at the two blowing ratios of 1.0 and 2.0. The Reynolds number based on cascade exit velocity and axial chord length was 1.1 × 106 and the overall pressure ratio was 1.32. The turbulence intensity level at the cascade inlet was 9.7%. Results showed that the overall heat transfer coefficients increased with increasing tip gap clearance, but decreased with increasing blowing ratio. However, the overall film-cooling effectiveness increased with increasing blowing ratio. Results also showed that the overall film-cooling effectiveness increased but heat transfer coefficients decreased for the squealer tip when compared to the plane tip at the same tip gap clearance and blowing ratio conditions.


Author(s):  
E. Findeisen ◽  
B. Woerz ◽  
M. Wieler ◽  
P. Jeschke ◽  
M. Rabs

This paper presents two different numerical methods to predict the thermal load of a convection-cooled gas-turbine blade under realistic operating temperature conditions. The subject of the investigation is a gas-turbine rotor blade equipped with an academic convection-cooling system and investigated at a cascade test-rig. It consists of three cooling channels, which are connected outside the blade, so allowing cooling air temperature measurements. Both methods use FE models to obtain the temperature distribution of the solid blade. The difference between these methods lies in the generation of the heat transfer coefficients along the cooling channel walls which serve as a boundary condition for the FE model. One method, referred to as the FEM1D method, uses empirical one-dimensional correlations known from the available literature. The other method, the FEM2D method, uses three-dimensional CFD simulations to obtain two-dimensional heat transfer coefficient distributions. The numerical results are compared to each other as well as to experimental data, so that the benefits and limitations of each method can be shown and validated. Overall, this paper provides an evaluation of the different methods which are used to predict temperature distributions in convection-cooled gas-turbines with regard to accuracy, numerical cost and the limitations of each method. The temperature profiles obtained in all methods generally show good agreement with the experiments. However, the more detailed methods produce more accurate results by causing higher numerical costs.


Author(s):  
Karthik Krishnaswamy ◽  
◽  
Srikanth Salyan ◽  

The performance of a gas turbine during the service life can be enhanced by cooling the turbine blades efficiently. The objective of this study is to achieve high thermohydraulic performance (THP) inside a cooling passage of a turbine blade having aspect ratio (AR) 1:5 by using discrete W and V-shaped ribs. Hydraulic diameter (Dh) of the cooling passage is 50 mm. Ribs are positioned facing downstream with angle-of-attack (α) of 30° and 45° for discrete W-ribs and discerte V-ribs respectively. The rib profiles with rib height to hydraulic diameter ratio (e/Dh) or blockage ratio 0.06 and pitch (P) 36 mm are tested for Reynolds number (Re) range 30000-75000. Analysis reveals that, area averaged Nusselt numbers of the rib profiles are comparable, with maximum difference of 6% at Re 30000, which is within the limits of uncertainty. Variation of local heat transfer coefficients along the stream exhibited a saw tooth profile, with discrete W-ribs exhibiting higher variations. Along spanwise direction, discrete V-ribs showed larger variations. Maximum variation in local heat transfer coefficients is estimated to be 25%. For experimented Re range, friction loss for discrete W-ribs is higher than discrete-V ribs. Rib profiles exhibited superior heat transfer capabilities. The best Nu/Nuo achieved for discrete Vribs is 3.4 and discrete W-ribs is 3.6. In view of superior heat transfer capabilities, ribs can be deployed in cooling passages near the leading edge, where the temperatures are very high. The best THPo achieved is 3.2 for discrete V-ribs and 3 for discrete W-ribs at Re 30000. The ribs can also enhance the power-toweight ratio as they can produce high thermohydraulic performances for low blockage ratios.


Author(s):  
Sumanta Acharya ◽  
Huitao Yang ◽  
Srinath V. Ekkad ◽  
Chander Prakash ◽  
Ron Bunker

Numerical simulations of flow and heat transfer are presented for a GE-E3 turbine blade with a film-cooled tip. Results are presented for both a flat tip and a squealer tip. Straight-through coolant holes are considered, and the calculation domain includes the flow development in the coolant delivery tubes. Results are presented with three different tip gaps representing 1%, 1.5% and 2.5% of blade span, a blowing ratio (ratio of coolant-jet-exit velocity to average passage flow velocity) of 1, and an inlet turbulence intensity of 6.1%. On a flat tip, film coolant injection is shown to lower the local pressure ratio and alters the nature of the leakage vortex. High film cooling effectiveness and low heat transfer coefficients are obtained along the coolant trajectory; these values increase slightly with increasing tip clearances. For a squealer tip, the flow inside the squealer cavity exhibits streamwise directed flow, which alters the trajectory of the coolant jets and reduces their effectiveness.


Sign in / Sign up

Export Citation Format

Share Document