Intensity of Singular Stress Fields at the End of a Cylindrical Inclusion

2003 ◽  
Vol 70 (4) ◽  
pp. 487-495 ◽  
Author(s):  
N.-A. Noda ◽  
T. Genkai ◽  
Q. Wang

In short fiber reinforced composite it is known that the singular stress at the end of fibers causes crack initiation, propagation, and final failure. The singular stress field is controlled by the generalized stress intensity factors defined at the end of the inclusion. In this study the stress intensity factors are discussed for an elastic cylindrical inclusion in an infinite body under (A) asymmetric uniaxial tension in the x direction, and (B) symmetric uniaxial tension in the z direction. These problems are formulated as a system of integral equations with Cauchy-type or logarithmic-type singularities, where densities of body force distributed in infinite bodies having the same elastic constants as those of the matrix and inclusion are unknown. In the numerical analysis, the unknown body force densities are expressed as fundamental density functions and weight functions. Here, fundamental density functions are chosen to express the symmetric and skew-symmetric stress singularities. Then, the singular stress fields at the end of a cylindrical inclusion are discussed with varying the fiber length and elastic ratio. The results are compared with the ones of a rectangular inclusion under longitudinal and transverse tension.

1987 ◽  
Vol 22 (4) ◽  
pp. 203-207 ◽  
Author(s):  
M H Aliabadi ◽  
D P Rooke ◽  
D J Cartwright

In order to compute stress intensity factors accurately, the standard boundary element method is modified to take explicit account of the singularity in the stresses at a crack-tip. The known expansion terms of the crack tip displacement and stress fields are subtracted to remove the numerical difficulties associated with the representation of a singular stress field at the crack-tip. Hence the accuracy of calculation is much improved, without appreciably increasing the amount of computation involved. Furthermore, the stress intensity factor is directly obtained as a part of a solution and no extrapolations are required. The improved formulation is applied to a configuration, which is representative of a part of the wing in a civil transport aeroplane. This configuration consists of a pair of circular cut-outs (supply ports) near to which smaller holes exist; these small holes are particularly susceptible to cracking.


2007 ◽  
Vol 353-358 ◽  
pp. 2449-2452
Author(s):  
Naoaki Noda ◽  
Chun Hui Xu

In this study, a rectangular interfacial crack in three dimensional bimaterials is analyzed. First, the problem is formulated as a system of singular integral equations on the basis of the body force method. In the numerical analysis, unknown body force densities are approximated by the products of the fundamental density functions and power series, where the fundamental density functions are chosen to express a two-dimensional interface crack exactly. The calculation shows that the present method gives smooth variations of stress intensity factor along the crack front for various aspect ratios. The present method gives rapidly converging numerical results and highly satisfied boundary conditions throughout the crack boundary. It is found that the stress intensity factors K1 and K2 are determined by bimaterials constant e alone, independent of elastic modulus ratio and Poisson's ratio.


1977 ◽  
Vol 99 (3) ◽  
pp. 477-484 ◽  
Author(s):  
J. M. Bloom ◽  
W. A. Van Der Sluys

This paper evaluates eight different analytical procedures used in determining elastic stress intensity factors for gradient or nonlinear stress fields. From a fracture viewpoint, the main interest in this problem comes from the nuclear industry where the safety of the nuclear system is of concern. A fracture mechanics analysis is then required to demonstrate the vessel integrity under these postulated accident conditions. The geometry chosen for his study is that of a 10-in. thick flawed plate with nonuniform stress distribution through the thickness. Two loading conditions are evaluated, both nonlinear and both defined by polynomials. The assumed cracks are infinitely long surface defects. Eight methods are used to find the stress intensity factor: 1–maximum stress, 2–linear envelope, 3–linearization over the crack length from ASME Code, Section XI, 4–equivalent linear moment from ASME Code, Section III, Appendix G for thermal loadings, 5–integration method from WRC 175, Appendix 4 for thermal loadings, 6–8-node singularity (quarter-point) isoparametric element in conjunction with the displacement method, 7–polynomial method, and 8–semi-infinite edge crack linear distribution over crack. Comparisons are made between all eight procedures with the finding that the methods can be ranked in order of decreasing conservatism and ease of application as follows: 1–maximum stress, 2–linear envelope, 3–linearization over the crack length, 4–polynomial method, and 5–singularity element method. Good agreement is found between the last three of these methods. The remaining three methods produce nonconservative results.


2021 ◽  
pp. 1-22
Author(s):  
Nitish Kumar ◽  
Syed Nizamuddin Khaderi

Abstract We investigate the mechanics of the detachment of an inclined micro-pillar adhered to a dissimilar substrate when subjected to a combination of an axial load and end moment. When the micro-pillar has adhered to the substrate, singular stress fields exist at the bi-material corners. The order of singularity is estimated using asymptotic analysis. The first two terms in the asymptotic expansion lead to singular stress fields. The magnitude of the singularity is evaluated in terms of the elastic mismatch between the pillar and substrate and the micro-pillar inclination. The asymptotic stress due to the moment loading is more sensitive to the micro-pillar inclination when compared to that due to the axial loading. They are insensitive to the micro-pillar inclination when the micro-pillar is rigid when compared to the substrate. A short interfacial crack is further assumed to exist at the bi-material corner. This crack is embedded in the corner singularity region and is loaded by the singular fields due to axial and bending loads. A boundary layer analysis is performed on the singular zone to estimate the stress intensity factor when a short crack embedded in it is subjected to the singular fields. The stress intensity factors are also calculated for a long interfacial crack at the bi-material corner, which extends beyond the singular zone. Using the above results, we investigate the detachment of the inclined micro-pillar under the combination of an axial load and end moment.


2005 ◽  
Vol 40 (8) ◽  
pp. 785-800 ◽  
Author(s):  
B Zuccarello ◽  
S Ferrante

A new systematic experimental procedure has been developed to obtain the stress intensity factors governing the singular stress field that occurs near the intersection between the interface and free edges of bimaterial joints. A preliminary theoretical study of the singular stress field is carried out by the well-known Airy stress function method. The obtained stress laws are properly combined with the basic law of photoelasticity in order to define a procedure that permits the zone dominated by the singularity to be located and the stress intensity factors (SIFs) to be computed on the basis of full field data provided from automated photoelasticity. In particular, a systematic error analysis is used to determine the model zone where the experimental data have to be collected in order to obtain accurate SIF evaluation. As an example, the proposed method is applied to determine the SIFs of various aluminium/ PSM-1 specimens under different external loading conditions using Fourier transform photoelasticity. The experimental results have been compared to those obtained by an independent procedure, based on a boundary element approach, in order to validate the accuracy of the proposed procedure.


Author(s):  
Lin Weng ◽  
Zengliang Gao ◽  
Xiaogui Wang

An eigenvalue method was proposed to study the stress intensity factors associated with the oscillating stress singularity for the axisymmetric cylindrical interface crack of the fiber/matrix composites. The fiber is a transversely isotropic material and the matrix is isotropic. Based on the fundamental equations of the spacial axisymmetric problem and the assumption of first-order approximation of the singular stress field, the discrete characteristic equation was derived using the displacement functions in the form of separated variables and the technique of meshless method. The eigenvalue is relative to the order of stress singularity, and the associated eigenvector is with respect to the displacement angular variations. The stress angular variations were derived by introducing the displacement angular variations into the constitutive relations. A finite element fiber/matrix model was used to verify the validation of the proposed eigenvalue method. The numerical results of the order of stress singularity and normalized stress angular variations are in good agreement with those obtained by the eigenvalue method. Based on the order of stress singularity and stress angular variations obtained by the eigenvalue method, as well as the numerical singular stress fields obtained by the finite element method (FEM), the stress intensity factors were determined successfully with the linear extropolation method.


2020 ◽  
Vol 22 (4) ◽  
pp. 931-938
Author(s):  
O. Zebri ◽  
H. El Minor ◽  
A. Bendarma

AbstractIn fracture mechanics most interest is focused on stress intensity factors, which describe the singular stress field ahead of a crack tip and govern fracture of a specimen when a critical stress intensity factor is reached. In this paper, stress intensity factors which represents fracture toughness of material, caused by a notch in a volumetric approach has been examined, taking into account the specific conditions of loading by examining various U-notched circular ring specimens, with various geometries and boundary conditions, under a mixed mode I+II. The bend specimens are computed by finite element method (FEM) and the local stress distribution was calculated by the Abaqus/CAE. The results are assessed to determine the evolution of the stress intensity factor of different notches and loading distances from the root of notch. This study shows that the tenacity is not intrinsic to the material for all different geometries notches.


Sign in / Sign up

Export Citation Format

Share Document