Seismic Response Analysis of Piping Systems With Nonlinear Supports Using Differential Algebraic Equations

2004 ◽  
Vol 126 (1) ◽  
pp. 91-97 ◽  
Author(s):  
Katsuhisa Fujita ◽  
Tetsuya Kimura ◽  
Yoshikazu Ohe

Hysteresis elements such as elasto-plastic dampers are important elements for mechanical structures, especially for earthquake-proof structures. When such nonlinear supports are utilized for piping systems, the nonlinearities of the hysteresis elements and the geometrical complexity of the piping systems lead to complicated seismic responses, and thus further studies are required in order to enhance the reliability of the earthquake-proof design. In the seismic response analysis, the method of time history response analysis is widely used. In this paper, a method of nonlinear seismic response analysis for a piping systems using a combination of the FEM and the Differential Algebraic Equations (DAE) is proposed. As it is well known, the DAE is suitable for numerical analysis of time history responses for mechanical structures and machinery elements. According to the advantage of the DAE, the numerical modeling and simulation of a complex piping systems supported by the hysteresis elements can be easily carried out by using the proposed method. In order to verify the usefulness of the method, the time history responses of piping systems supported by a elasto-plastic damper is examined for seismic excitation by using the proposed method. The damper is modeled as a bilinear model. The effects of the second stiffness and the stiffness associated with the plastic deformation of the damper on the seismic responses are investigated using an actually recorded earthquake motion.

2013 ◽  
Vol 671-674 ◽  
pp. 1341-1345
Author(s):  
Jing Wei Nie ◽  
Hong Bing Liu ◽  
Zhao Fang

The research on elastic-plastic dynamic response analysis of the high-rise building with transfer storey is carried out under different earthquake record inputs.The displacement time- history response of the top floor and the transfer storey, also the displacement envelope diagram and interlayer drift angle envelope diagram are obtained.Theoretical reference for the design of the weak layer is provided.


2011 ◽  
Vol 94-96 ◽  
pp. 1941-1945
Author(s):  
Yi Wu ◽  
Chun Yang ◽  
Jian Cai ◽  
Jian Ming Pan

Elasto-plastic analysis of seismic responses of valve hall structures were carried out by using finite element software, and the effect of seismic waves on the seismic responses of the valve hall structures and suspension equipments were studied. Results show that significant torsional responses of the structure can be found under longitudinal and 3D earthquake actions. Under 3D earthquake actions, the seismic responses of the suspension valves are much more significant than those under 1D earthquake actions, the maximum tensile force of the suspenders is about twice of that under 1D action. The seismic responses of the suspension valves under vertical earthquake actions are much stronger than those under horizontal earthquake actions, when suffering strong earthquake actions; the maximum vertical acceleration of the suspension valves is about 4 times of that under horizontal earthquake actions. It is recommended that the effects of 3D earthquake actions on the structure should be considered in seismic response analysis of the valve hall structure.


2012 ◽  
Vol 166-169 ◽  
pp. 2138-2142
Author(s):  
Hui Min Wang ◽  
Liang Cao ◽  
Ji Yao ◽  
Zhi Liang Wang

For the complex features in the form of a flat L-shaped reinforced concrete frame structure, the three dimensional FEM model of the structure was established in this paper, and the dynamic characteristics of the structure was analyzed, the participation equivalent mass of every mode’s order was obtained. Seismic response analysis for the structure was carried out with modal decomposition spectrum method and time history analysis method, the weak layer of the structure was pointed out and the reference for the structural design was provided.


2013 ◽  
Vol 639-640 ◽  
pp. 911-916
Author(s):  
Cui Xiang Liang

This paper is concerned with the dynamical behavior of a chaotic system which is a model for seismic response of structures. The local bifurcation of the non-hyperbolic equilibrium point of the chaotic system is investigated by using center manifold method. The transcritical bifurcation is analyzed in detail. Based on numerical simulations, spectrums of maximal Lyapunov exponent and the bifurcation diagrams are presented for the dynamic analysis. The method proposed can be used as a reference of nonlinear seismic response analysis.


Sign in / Sign up

Export Citation Format

Share Document