Seismic Response Analysis on Flat L-Shaped Frame Structure Based on FEM

2012 ◽  
Vol 166-169 ◽  
pp. 2138-2142
Author(s):  
Hui Min Wang ◽  
Liang Cao ◽  
Ji Yao ◽  
Zhi Liang Wang

For the complex features in the form of a flat L-shaped reinforced concrete frame structure, the three dimensional FEM model of the structure was established in this paper, and the dynamic characteristics of the structure was analyzed, the participation equivalent mass of every mode’s order was obtained. Seismic response analysis for the structure was carried out with modal decomposition spectrum method and time history analysis method, the weak layer of the structure was pointed out and the reference for the structural design was provided.

2011 ◽  
Vol 90-93 ◽  
pp. 3214-3217
Author(s):  
Xiang Chao Yin ◽  
Zhe Sun ◽  
Xue Ling Li

This article mainly studied the seismic response of high-rise RC frame and the damping effect with viscoelastic damper. Taking a reinforced concrete frame structure of 12 layers as the research object, six schemes of damper installed were designed and the dynamic characteristics of these schemes were analyzed. The time history response analysis of 3D Tianjin waves was studied for the six schemes under frequent earthquake. The results show that seismic capacity of the structure could be significantly enhanced with dampers under frequent earthquake. Meanwhile, different damper installations also can make the structures have different damping effect.


2011 ◽  
Vol 255-260 ◽  
pp. 1096-1101
Author(s):  
Qing Zhao

Taking an engineering design case about a city elevated curved box girders bridge, the dynamic calculating model of the curved box girders bridge is created by the finite element analysis program ANSYS. The analysis of curved box girders bridge with space seismic response are discussed, and a time history analysis is conducted for the curved box girders bridge subjected to the E1 Centro earthquake waves in two conditions.The internal force and the displacement time history response curve of the curved box girders bridge are obtained. The results indicate that the seismic response of curved box girders bridge with three-dimensional earthquake are bigger than two-dimensional, and consider the vertical seismic have considerable influence on the axial force of bridge piers, the internal force and displacement of box girders.


2021 ◽  
Vol 11 (2) ◽  
pp. 585
Author(s):  
Zixiang Zhao ◽  
Xiaozu Su

In order to investigate the seismic performance of prestressed concrete rocking frame (PCRF), a theoretical model based on rigid body is established for a one-story single-span PCRF. The PCRF studied in this paper has the connecting interfaces set at the column feet and at the inner faces of the beam–column joints, allowing the columns to be uplifted with the accompanying separation of the beam–column interface and rotation of the beam and column around the interface. The tendons are arranged along the centerline of the beam and columns. The connections between the beam and columns and the anchoring of columns are accomplished by prestressing the tendons. The theoretical model consists of a rigid beam, rigid columns and elastic tendons. The governing motion equation of the PCRF is derived based on the model and a numerical solution of the equation of motion is obtained. The energy dissipation of the PCRF is analyzed and the calculation method for the coefficient of restitution is derived. Time history analysis and parameter analysis of seismic response of the PCRF are conducted and the results show that the PCRF has promising seismic behavior.


2012 ◽  
Vol 517 ◽  
pp. 824-831
Author(s):  
Yun Xiao ◽  
Jun Qing Lei ◽  
Zhong San Li

By response spectrum method, superposition method based elastic time-history analysis and nonlinear time-history analysis of Newmark-β based linear increasing acceleration method, the finite element models of frame piers 21#~29# of the Ziya River Bridge on Tianjin to Baoding railway are established, and an assistant program code is generated to analyze seismic response of the frame pier. Results indicate that the vibration modes of frame piers are scattered. Only a few modes would be aroused in a narrow band spectrum. And the seismic response obtained by the response spectrum method is generally 10%~20% smaller than which obtained by the elastic time-history analysis. Under seismic excitations along the longitudinal direction, the ratio of displacement difference between two columns to the maximum value is generally liner increased with the increasing of the girder deviation from the centre of the pier beam. And the plastic hinge yielding would occur both at the bottom and the top of pier columns under excitations of the transversal direction. As a result, taking more than 30 vibration modes into account is suggested in a seismic response analysis or design calculation for frame piers. A time-history analysis is recommended as well. The evaluation of earthquake resistant capability of the transversal direction should consider both the bottom and top of the columns, and the anti-seismic capability design of the longitudinal direction is one of the key points for frame piers in the ductility design.


2013 ◽  
Vol 275-277 ◽  
pp. 1311-1314
Author(s):  
Jian Ping He ◽  
Ya Li Wang ◽  
Yong Liu

In this paper,time-history analysis comparison of different parts of the displacement on eight floor three span Frame Strengthened with viscoelastic damper under the action of EI Centro earthquake wave .The results indicate that setting viscoelastic damper Strengthened structure can well inhibition Seismic response function, reducing the earthquake response of the structure,decreasing amplitude are relatively obvious, achieving a better seismic condition, meeting the needs of the standard, it is a kind of performance very good seismic energy dissipation strengthening methods.


2012 ◽  
Vol 594-597 ◽  
pp. 886-890 ◽  
Author(s):  
Gan Hong ◽  
Mei Li ◽  
Yi Zhen Yang

Abstract. In the paper, take full account of energy dissipation operating characteristics. Interlayer shear-frame structure for the analysis of the Wilson-Θmethod ELASTOPLASTIC schedule, the design of a nonlinear dynamic time history analysis procedure. On this basis, taking into account the restoring force characteristics of the energy dissipation system, the inflection point in the restoring force model treatment, to avoid a result of the calculation results of distortion due to the iterative error. A frame structure seismic response time history analysis results show that: the framework of the energy dissipation significantly lower than the seismic response of the common framework, and its role in the earthquake when more significant.


2016 ◽  
Vol 20 (7) ◽  
pp. 1125-1138 ◽  
Author(s):  
Jing Yu ◽  
Xiaojun Liu ◽  
Xingwen Liang

A new model that can simulate the behavior of construction joint subjected to seismic forces was proposed. Nonlinear time-history analysis was carried out for reinforced concrete regular frame structures designed in different seismic intensity regions as well as with different height-to-width ratios. Two kinds of numerical models are adopted to simulate the seismic behavior of each frame, one with construction joint using the new proposed model and the other without construction joint using the conventional model. Results show that the influence of construction joint on the seismic behavior of reinforced concrete frame is strongly related to structural nonlinearity. It may increase the top displacement and the inter-story drift, change the inter-story drift distributions, and exacerbated the local reaction of key members. The influence of construction joint cannot be ignored for structures with low emergency capacity against major earthquake. Seismic design suggestions are proposed from the aspect of calculation analysis method.


Sign in / Sign up

Export Citation Format

Share Document