Elastic-Plastic Seismic Response Analysis of High-Rise Building with Transfer Storey

2013 ◽  
Vol 671-674 ◽  
pp. 1341-1345
Author(s):  
Jing Wei Nie ◽  
Hong Bing Liu ◽  
Zhao Fang

The research on elastic-plastic dynamic response analysis of the high-rise building with transfer storey is carried out under different earthquake record inputs.The displacement time- history response of the top floor and the transfer storey, also the displacement envelope diagram and interlayer drift angle envelope diagram are obtained.Theoretical reference for the design of the weak layer is provided.

Author(s):  
Teruyoshi Otoyo ◽  
Akihito Otani

This paper shows a benchmark result regarding elastic-plastic seismic response analysis and fatigue evaluation for of piping model excitation test. National Research Institute for Earth Science and Disaster Prevention (NIED) has a lot of experimental results of shaking table test of piping. To propose advance seismic evaluation method for piping under severe seismic event, a task in JSME Code committee performs benchmark activity for elastic plastic seismic response analysis and evaluation for piping by using NIED’s experimental results [1]. Authors are taking part in the task and have been performed a benchmark of seismic response analysis and seismic evaluation by comparing with the experimental results. For fatigue evaluation, the strain ranges and the cycles of each range obtained from strain time history were evaluated. The response acceleration and displacement was evaluated for plastic collapse.


2004 ◽  
Vol 126 (1) ◽  
pp. 91-97 ◽  
Author(s):  
Katsuhisa Fujita ◽  
Tetsuya Kimura ◽  
Yoshikazu Ohe

Hysteresis elements such as elasto-plastic dampers are important elements for mechanical structures, especially for earthquake-proof structures. When such nonlinear supports are utilized for piping systems, the nonlinearities of the hysteresis elements and the geometrical complexity of the piping systems lead to complicated seismic responses, and thus further studies are required in order to enhance the reliability of the earthquake-proof design. In the seismic response analysis, the method of time history response analysis is widely used. In this paper, a method of nonlinear seismic response analysis for a piping systems using a combination of the FEM and the Differential Algebraic Equations (DAE) is proposed. As it is well known, the DAE is suitable for numerical analysis of time history responses for mechanical structures and machinery elements. According to the advantage of the DAE, the numerical modeling and simulation of a complex piping systems supported by the hysteresis elements can be easily carried out by using the proposed method. In order to verify the usefulness of the method, the time history responses of piping systems supported by a elasto-plastic damper is examined for seismic excitation by using the proposed method. The damper is modeled as a bilinear model. The effects of the second stiffness and the stiffness associated with the plastic deformation of the damper on the seismic responses are investigated using an actually recorded earthquake motion.


2014 ◽  
Vol 711 ◽  
pp. 520-524 ◽  
Author(s):  
Huan Qin Liu ◽  
Wei Bin Li ◽  
Ruo Yang Wu ◽  
Lin Fei Yan

Based on one 240-meter-high special-shaped RC chimney, the structure’s dynamic performance and elastic-plastic seismic response analysis has been studied in detail. From the analysis, it demonstrates the weak areas in the chimney. The interlayer displacement angle about corresponding performance points under four kinds of loading mode were also acuired, and the response of four loading patterns were analyzed.


Sign in / Sign up

Export Citation Format

Share Document