scholarly journals Erratum: “Nonlinear vibrations of suspended cables—Part I: Modeling and analysis” [Applied Mechanics Reviews, 2004, 57(6), pp. 443–478]

2005 ◽  
Vol 58 (3) ◽  
pp. 224-224
Author(s):  
Giuseppe Rega
2004 ◽  
Vol 57 (6) ◽  
pp. 443-478 ◽  
Author(s):  
Giuseppe Rega

This review article is the first of three parts of a Special Issue dealing with finite-amplitude oscillations of elastic suspended cables. This part is concerned with system modeling and methods of analysis. After shortly reporting on cable historical literature and identifying the topic and scope of the review, the article begins with a presentation of the mechanical system and of the ensuing mathematical models. Continuum equations of cable finite motion are formulated, their linearized version is reported, and nonlinear discretized models for the analysis of 2D or 3D vibration problems are discussed. Approximate methods for asymptotic analysis of either single or multi-degree-of-freedom models of small-sag cables are addressed, as well as asymptotic models operating directly on the original partial differential equations. Numerical tools and geometrical techniques from dynamical systems theory are illustrated with reference to the single-degree-of-freedom model of cable, reporting on measures for diagnosis of nonlinear and chaotic response, as well as on techniques for local and global bifurcation analysis. The paper ends with a discussion on the main features and problems encountered in nonlinear experimental analysis of vibrating suspended cables. This review article cites 226 references.


2004 ◽  
Vol 57 (6) ◽  
pp. 441-442
Author(s):  
Friedrich Pfeiffer ◽  
Arthur Leissa

1981 ◽  
Vol 64 (10) ◽  
pp. 18-27
Author(s):  
Yoshio Hamamatsu ◽  
Katsuhiro Nakada ◽  
Ikuo Kaji ◽  
Osamu Doi

2019 ◽  
Vol 3 (1) ◽  
pp. 160-165
Author(s):  
Hendry D. Chahyadi

The designs of automotive suspension system are aiming to avoid vibration generated by road condition interference to the driver. This final project is about a quarter car modeling with simulation modeling and analysis of Two-Mass modeling. Both existing and new modeling are being compared with additional spring in the sprung mass system. MATLAB program is developed to analyze using a state space model. The program developed here can be used for analyzing models of cars and vehicles with 2DOF. The quarter car modelling is basically a mass spring damping system with the car serving as the mass, the suspension coil as the spring, and the shock absorber as the damper. The existing modeling is well-known model for simulating vehicle suspension performance. The spring performs the role of supporting the static weight of the vehicle while the damper helps in dissipating the vibrational energy and limiting the input from the road that is transmitted to the vehicle. The performance of modified modelling by adding extra spring in the sprung mass system provides more comfort to the driver. Later on this project there will be comparison graphic which the output is resulting on the higher level of damping system efficiency that leads to the riding quality.


2006 ◽  
Vol 11 (3) ◽  
pp. 293-318 ◽  
Author(s):  
M. Zribi ◽  
N. B. Almutairi ◽  
M. Abdel-Rohman

The flexibility and low damping of the long span suspended cables in suspension bridges makes them prone to vibrations due to wind and moving loads which affect the dynamic responses of the suspended cables and the bridge deck. This paper investigates the control of vibrations of a suspension bridge due to a vertical load moving on the bridge deck with a constant speed. A vertical cable between the bridge deck and the suspended cables is used to install a hydraulic actuator able to generate an active control force on the bridge deck. Two control schemes are proposed to generate the control force needed to reduce the vertical vibrations in the suspended cables and in the bridge deck. The proposed controllers, whose design is based on Lyapunov theory, guarantee the asymptotic stability of the system. The MATLAB software is used to simulate the performance of the controlled system. The simulation results indicate that the proposed controllers work well. In addition, the performance of the system with the proposed controllers is compared to the performance of the system controlled with a velocity feedback controller.


Sign in / Sign up

Export Citation Format

Share Document