scholarly journals A Focus On Use

2008 ◽  
Vol 130 (02) ◽  
pp. 28-33 ◽  
Author(s):  
Jean Thilmany

This article analyses the need and benefit of the working of industrial designers and product engineers together. According to engineers and others at the forefront of product development, to do the job right requires a collaboration involving design engineers, industrial designers, manufacturing engineers, and several other players, like marketing people, all of whom have important knowledge that needs to influence a design. Companies such as Trek Bicycle Corp. and Empire Level Manufacturing Corp. have developed practices that foster innovative, human-centered product development. Experts agree that computer-aided design (CAD) and rapid prototyping applications are the two most helpful systems, even though the two types of designers may use the tools in somewhat several ways. According to Rainer Gawlick, vice president of marketing at SolidWorks in Concord, Massachusetts, current CAD systems can help bridge the design-to-engineering-to-manufacturing gap.

i-com ◽  
2015 ◽  
Vol 14 (2) ◽  
Author(s):  
Stephen L. Wood ◽  
Gisela Susanne Bahr ◽  
Marc Ritter

AbstractGreat design engineers are highly creative and unorthodox individuals who invent novel solutions that satisfy a set of constraints that are often ill-defined and customer driven. Designers use many tools to develop their designs, such as computer aided design (CAD) systems, that do not support the cognition that drives the design process. This paper develops the cognitive psychological background, a


2008 ◽  
Vol 130 (08) ◽  
pp. 34-38
Author(s):  
Mark A. Burgess

This article discusses changes in the digital product development. Advances in computing power are multiplying the capabilities of design engineers. Information technology has advanced at a tremendous pace. Developers of design systems have exploited this capability with sophisticated mathematics, and today's systems are capable of producing very complex designs in much higher definition than ever before. Advances in geometric modeling have made it possible to represent 3-D solids in minute detail. Process modeling, which began with the study of a single manufacturing process, eventually gave way to complete factory flow simulations. The recent advances in IT enabled crossing the boundaries among technology, geometry, and process modeling with integrated computer-aided engineering, computer-aided design, and process planning. Current trends have now extended process modeling throughout the integrated supply chain and the extended enterprise.


2015 ◽  
Vol 22 (2) ◽  
pp. 345-355
Author(s):  
Osiris Canciglieri Junior ◽  
Aguilar Selhorst Junior ◽  
Ângelo Márcio Oliveira Sant’Anna

A tecnologia de prototipagem de produtos por adição de material (Rapid Prototyping) e por remoção de material (Subtractive Rapid Prototyping) pode variar em: qualidade, tempo e custos, dependendo das características do produto. A escolha da tecnologia muitas vezes está condicionada à decisão empírica do designer/engenheiro ou operador, devido ao tipo de material, dimensão e precisão. Este artigo apresenta um método para tomada de decisão que auxilia a escolha da tecnologia de prototipagem rápida mais adequada na concepção de novos produtos. Foram utilizados os conceitos de DFM (Design for Manufacturing), CAD (Computer Aided Design), RPD (Rapid Product Development) e MAUT (Multiattribute Utility) em dois produtos de diferente estrutura e material (composto leve e simples maciço) para avaliar e validar o método proposto. Os resultados apresentam comparações entre as tecnologias de prototipagem rápida a partir de critérios para tomada de decisão, aperfeiçoando a concepção de protótipos mais eficientes.


2017 ◽  
Vol 9 (7) ◽  
pp. 168781401771038 ◽  
Author(s):  
Isad Saric ◽  
Adil Muminovic ◽  
Mirsad Colic ◽  
Senad Rahimic

This article presents architecture of integrated intelligent computer-aided design system for designing mechanical power-transmitting mechanisms (IICADkmps). The system has been developed in C# program environment with the aim of automatising the design process. This article presents a modern, automated approach to design. Developed kmps modules for calculation of geometrical and design characteristics of mechanical power-transmitting mechanisms are described. Three-dimensional geometrical parameter modelling of mechanical power-transmitting mechanisms was performed in the computer-aided design/computer-aided manufacturing/computer-aided engineering system CATIA V5. The connection between kmps calculation modules and CATIA V5 modelling system was established through initial three-dimensional models – templates. The outputs from the developed IICADkmps system generated final three-dimensional virtual models of mechanical power-transmitting mechanisms. Testing of the developed IICADkmps system was performed on friction, belt, cogged (spur and bevel gears) and chain transmitting mechanisms. Also, connection of the developed IICADkmps system with a device for rapid prototyping and computer numerical control machines was made for the purpose of additional testing and verification of practical use. Physical prototypes of designed characteristic elements of mechanical power-transmitting mechanisms were manufactured. The selected test three-dimensional virtual prototypes, obtained as an output from the developed IICADkmps system, were manufactured on the device for rapid prototyping (three-dimensional colour printer Spectrum Z510) and computer numerical control machines. Finally, at the end of the article, conclusions and suggested possible directions of further research, based on theoretical and practical research results, are presented.


Author(s):  
Xun Xu

One of the key activities in any product design process is to develop a geometric model of the product from the conceptual ideas, which can then be augmented with further engineering information pertaining to the application area. For example, the geometric model of a design may be developed to include material and manufacturing information that can later be used in computer-aided process planning and manufacturing (CAPP/CAM) activities. A geometric model is also a must for any engineering analysis, such as finite elopement analysis (FEA). In mathematic terms, geometric modelling is concerned with defining geometric objects using computational geometry, which is often, represented through computer software or rather a geometric modelling kernel. Geometry may be defined with the help of a wire-frame model, surface model, or solid model. Geometric modelling has now become an integral part of any computer-aided design (CAD) system. In this chapter, various geometric modelling approaches, such as wire-frame, surface, and solid modelling will be discussed. Basic computational geometric methods for defining simple entities such as curves, surfaces, and solids are given. Concepts of parametric, variational, history-based, and history-free CAD systems are explained. These topics are discussed in this opening chapter because (a) CAD was the very first computer-aided technologies developed and (b) its related techniques and methods have been pervasive in the other related subjects like computer-aided manufacturing. This chapter only discusses CAD systems from the application point of view; CAD data formats and data exchange issues are covered in the second chapter.


Sign in / Sign up

Export Citation Format

Share Document