3D segmentation of medical images for computer-aided design and rapid prototyping of orthopedic devices

1998 ◽  
Author(s):  
Justin R. Kidder ◽  
Bartholomew O. Nnaji
2017 ◽  
Vol 9 (7) ◽  
pp. 168781401771038 ◽  
Author(s):  
Isad Saric ◽  
Adil Muminovic ◽  
Mirsad Colic ◽  
Senad Rahimic

This article presents architecture of integrated intelligent computer-aided design system for designing mechanical power-transmitting mechanisms (IICADkmps). The system has been developed in C# program environment with the aim of automatising the design process. This article presents a modern, automated approach to design. Developed kmps modules for calculation of geometrical and design characteristics of mechanical power-transmitting mechanisms are described. Three-dimensional geometrical parameter modelling of mechanical power-transmitting mechanisms was performed in the computer-aided design/computer-aided manufacturing/computer-aided engineering system CATIA V5. The connection between kmps calculation modules and CATIA V5 modelling system was established through initial three-dimensional models – templates. The outputs from the developed IICADkmps system generated final three-dimensional virtual models of mechanical power-transmitting mechanisms. Testing of the developed IICADkmps system was performed on friction, belt, cogged (spur and bevel gears) and chain transmitting mechanisms. Also, connection of the developed IICADkmps system with a device for rapid prototyping and computer numerical control machines was made for the purpose of additional testing and verification of practical use. Physical prototypes of designed characteristic elements of mechanical power-transmitting mechanisms were manufactured. The selected test three-dimensional virtual prototypes, obtained as an output from the developed IICADkmps system, were manufactured on the device for rapid prototyping (three-dimensional colour printer Spectrum Z510) and computer numerical control machines. Finally, at the end of the article, conclusions and suggested possible directions of further research, based on theoretical and practical research results, are presented.


2013 ◽  
Vol 404 ◽  
pp. 754-757 ◽  
Author(s):  
Ludmila Novakova-Marcincinova ◽  
Jozef Novak-Marcincin

Rapid Prototyping (RP) can be defined as a group of techniques used to quickly fabricate a scale model of a part or assembly using three-dimensional Computer Aided Design (CAD) data. What is commonly considered to be the first Rapid Prototyping technique, Stereolithography was developed by 3D Systems of Valencia, CA, USA. The company was founded in 1986, and since then, a number of different Rapid Prototyping techniques have become available. In paper are presented possibilities of Rapid Prototyping application in area of intelligent optimization design.


Author(s):  
Ganzi Suresh ◽  
K. L. Narayana

Rapid prototyping (RP) advancements are in light of the rule of making three-dimensional geometries straightforwardly from computer aided design (CAD) by stacking two-dimensional profiles on top of one another. Rapid manufacturing (RM) is the utilization of rapid prototyping advancements to make end-utilize or completed items. Aside from the ordinary assembling methods which are utilized for quite a while assembling of an item, added substance assembling methodologies have picked up force in the late years. The explanation for this is that these techniques don't oblige extraordinary tooling and don't evacuate material which is exceptionally advantageous really taking shape of a segment. Rapid manufacturing is the developing innovation in assembling commercial ventures with a specific end goal to create the model inside the less time and expense effective. In this paper we talked about a portion of the fast assembling advancements in light of the sort of crude material is utilized for the procedures, applications, preferences and limits.


Author(s):  
S O Onuh ◽  
K K B Hon

In recent years, rapid prototyping (RP) technology has been implemented in many spheres of industry, particularly in the area of new product development. Rapid prototyping has the capability to produce a tangible solid part, directly from three-dimensional computer aided design (CAD) data, from a range of materials such as photocurable resin, ceramic and metallic powders and paper. However, in most cases, models built in acrylic-based resin in the stereolithography (SL) process have not yielded the desired quality, which has led to a shift in the use of this resin to more expensive ones that have longer build time. An experimental investigation has been carried out to determine statistically the optimum build parameters with the use of the Taguchi method in order to improve the SL product quality. Two new hatch styles have been developed in this study and a confirmation experiment has shown a significant improvement in part accuracy.


2014 ◽  
Vol 20 (4) ◽  
pp. 270-279 ◽  
Author(s):  
Sameer C. Raghatate ◽  
Abhaykumar M. Kuthe ◽  
Tushar R. Deshmukh ◽  
Sandeep W. Dahake

Purpose – The main purpose of this paper is to report the successful treatment modality for patients suffering from arthritis of the metatarsophalangeal joint (MTPJ) of the foot which otherwise could not be treated through traditional surgeries. Design/methodology/approach – The unique capabilities of the computer-aided design and the rapid prototyping (RP) technology are used to develop the customized MTPJ implant (SamKu). Findings – This approach shows good results in the fabrication of the MTPJ implant. Postoperatively, the patient experienced normalcy in the movement of the MTPJ of the foot. Practical implications – Advanced technologies made it possible to fabricate the customized MTPJ implant (SamKu). The advantage of this approach is that the physical RP model assisted in designing the final metallic implant. It also helped in the surgical planning and the rehearsals. Originality/value – This case report illustrates the benefits of imaging/computer-aided manufacturing/RP to develop the customized implant and serve those patients who could not be treated in the traditional way. This is a pioneered attempt toward implementation of a customized implant for patients suffering from arthritis of the MTPJ.


Sign in / Sign up

Export Citation Format

Share Document