Error Analysis on Finite Element Modeling of Involute Spur Gears

2005 ◽  
Vol 128 (1) ◽  
pp. 90-97 ◽  
Author(s):  
Jian D. Wang ◽  
Ian M. Howard

Finite element analysis can incorporate two-dimensional (2D) modeling if the geometry, load, and boundary conditions meet the requirements. For many applications, a wide range of problems are solved in 2D, due to the efficiency and costs of computation. However, care has to be taken to avoid modeling errors from significantly influencing the result. When the application area is nonlinear, such as when modeling contact problems or fracture analysis, etc, the 2D assumption must be used cautiously. In this paper, a large number of 2D and three-dimensional (3D) gear models were investigated using finite element analysis. The models included contact analysis between teeth in mesh, a gear body (disk), and teeth with and without a crack at the tooth root. The model results were compared using parameters such as the torsional (mesh) stiffness, tooth stresses and the stress intensity factors that are obtained under assumptions of plane stress, plane strain, and 3D analysis. The models considered variations of face width of the gear from 5 mm to 300 mm. This research shows that caution must be used especially where 2D assumptions are used in the modeling of solid gears.

2008 ◽  
Vol 43 (2) ◽  
pp. 75-85 ◽  
Author(s):  
A Bhargava ◽  
K N Shivakumar

Countersunk rivets are used to join components to achieve aerodynamic or hydrodynamic surfaces. At countersunk holes, three‐dimensional stress and strain concentrations occur. Previously, the present authors developed a three‐dimensional equation for the stress concentration factor Kt through a detailed finite element analysis. This paper extends the study to include an equation for three‐dimensional strain concentration factor Ktε using a similar approach. The resulting equation was verified by finite element analysis for a wide range of countersunk hole configurations and plate sizes. Results showed that the maximum strain concentration is at the countersunk edge. The developed equation is within 5 per cent of the finite element results for all practical cases. It was also found that the Ktε and Kt expressions are similar and Ktε≥ Kt. The maximum difference between the two is 8 per cent (for = 0.3) or 2 for straight‐shank holes and about 2/2 for countersunk holes. The proposed equation is a valuable tool for strain‐based design of structural elements.


1999 ◽  
Vol 66 (2) ◽  
pp. 460-467 ◽  
Author(s):  
S. H. Ju ◽  
R. E. Rowlands

A three-dimensional contact element based on the penalty function method has been developed for contact frictional problems with sticking, sliding, and separation modes infinite element analysis. A major advantage of this contact element is that its stiffness matrix is symmetric, even for frictional contact problems which have extensive sliding. As with other conventional finite elements, such as beam and continuum elements, this new contact element can be added to an existing finite element program without having to modify the main finite element analysis program. One is therefore able to easily implement the element into existing nonlinear finite element analysis codes for static, dynamic, and inelastic analyses. This element, which contains one contact node and four target nodes, can be used to analyze node-to-surface contact problems including those where the contact node slides along one or several target surfaces.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


Sign in / Sign up

Export Citation Format

Share Document