A Three-Dimensional Frictional Contact Element Whose Stiffness Matrix is Symmetric

1999 ◽  
Vol 66 (2) ◽  
pp. 460-467 ◽  
Author(s):  
S. H. Ju ◽  
R. E. Rowlands

A three-dimensional contact element based on the penalty function method has been developed for contact frictional problems with sticking, sliding, and separation modes infinite element analysis. A major advantage of this contact element is that its stiffness matrix is symmetric, even for frictional contact problems which have extensive sliding. As with other conventional finite elements, such as beam and continuum elements, this new contact element can be added to an existing finite element program without having to modify the main finite element analysis program. One is therefore able to easily implement the element into existing nonlinear finite element analysis codes for static, dynamic, and inelastic analyses. This element, which contains one contact node and four target nodes, can be used to analyze node-to-surface contact problems including those where the contact node slides along one or several target surfaces.

2012 ◽  
Vol 594-597 ◽  
pp. 2723-2726
Author(s):  
Wen Shan Lin

In the present study, the constitutive law of the deformation theory of plasticity has been derived. And that develop the two-dimensional and three-dimensional finite element program. The results of finite element and analytic of plasticity are compared to verify the derived the constitutive law of the deformation theory and the FEM program. At plastic stage, the constitutive laws of the deformation theory can be expressed as the linear elastic constitutive laws. But, it must be modified by iteration of the secant modulus and the effective Poisson’s ratio. Make it easier to develop finite element program. Finite element solution and analytic solution of plasticity theory comparison show the answers are the same. It shows the derivation of the constitutive law of the deformation theory of plasticity and finite element analysis program is the accuracy.


1988 ◽  
Vol 16 (4) ◽  
pp. 249-273 ◽  
Author(s):  
J. P. Chang ◽  
K. Satyamurthy ◽  
N. T. Tseng

Abstract The finite element analysis of tires under a vertical footprint load requires the use of three-dimensional models. The excessive CPU time required for such models, especially when the tire construction is considered in detail, makes parametric studies difficult and time-consuming. Therefore, one of the principal objectives of finite element program development is to provide an efficient tool for the three-dimensional analysis of tires so that it can be integrated into the design process effectively. In the present study, a systematic finite element procedure is developed for solving loaded tire problems. The principal elements of this procedure are an efficient pre-processor for input generation, a multipoint constraint option to allow the user to exploit any existing symmetry in the problem, and a procedure for generating initial conditions from axisymmetric analyses. This procedure can be used to conduct parametric studies on loaded tires by using a rather coarse mesh and large load steps, thus leading to a significant reduction in CPU time, with a minimum sacrifice in solution accuracy. The efficiency of this procedure is illustrated with the analysis of a radial automobile tire.


Author(s):  
M. H. Refaat ◽  
S. A. Meguid

Abstract Current solution schemes of variational inequalities arising in frictional contact problems adopt penalty and regularization techniques. The convergence and accuracy of these schemes are governed by user-defined parameters. To overcome the difficulties associated with the ad hoc use of such parameters, the variational inequality of the general frictional contact problem is treated in this paper using mathematical programming. A new non-differential optimization (NDO) technique, in association with quadratic programming, is used to treat the resulting variational inequalities.


2005 ◽  
Vol 128 (1) ◽  
pp. 90-97 ◽  
Author(s):  
Jian D. Wang ◽  
Ian M. Howard

Finite element analysis can incorporate two-dimensional (2D) modeling if the geometry, load, and boundary conditions meet the requirements. For many applications, a wide range of problems are solved in 2D, due to the efficiency and costs of computation. However, care has to be taken to avoid modeling errors from significantly influencing the result. When the application area is nonlinear, such as when modeling contact problems or fracture analysis, etc, the 2D assumption must be used cautiously. In this paper, a large number of 2D and three-dimensional (3D) gear models were investigated using finite element analysis. The models included contact analysis between teeth in mesh, a gear body (disk), and teeth with and without a crack at the tooth root. The model results were compared using parameters such as the torsional (mesh) stiffness, tooth stresses and the stress intensity factors that are obtained under assumptions of plane stress, plane strain, and 3D analysis. The models considered variations of face width of the gear from 5 mm to 300 mm. This research shows that caution must be used especially where 2D assumptions are used in the modeling of solid gears.


Sign in / Sign up

Export Citation Format

Share Document