strain concentration
Recently Published Documents


TOTAL DOCUMENTS

247
(FIVE YEARS 36)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
pp. 153-166
Author(s):  
A. A Tashkinov ◽  
V. E Shavshukov

It was experimentally observed that in polycrystalline materials under low macro loading of the specimen the first sites of failure initiation take place in the specific clusters of few grains. In some grains of these extreme clusters, the local (meso-) strains and stresses are high enough to cause first damages or plastic slips. In the stochastic microstructure of polycrystals, the formation of an extreme cluster is random and rare. Nevertheless, they govern the failure process initiation and can severely affect the reliability of polycrystalline machine parts. It is time and resource consuming to search and investigate extreme clusters on the real specimens of polycrystalline materials experimentally. A theoretical tool is desirable. Here we present the powerful computational method to look for extreme clusters, to investigate their possible patterns, and to evaluate the absolute maximums of local strains/stresses that can be achieved in these clusters. The experimentally observed clusters consist of few (3-4) preferably oriented neighboring grains or even of one big supergrain. The strain and stress bursts arise due to an interaction of the grains. One can expect that in bigger clusters, larger local bursts of fields can be generated. We found the typical forms of the extreme clusters (small and big) in four different polycrystals with grains of a weak and strong anisotropy for the case of uniaxial tension. In all regarded cases, the extreme clusters have the forms of the symmetrical patterns. In big clusters of highly anisotropic grains, the maximum of mesostrain exceeds the macrostrain by several times. In clusters of weakly anisotropic grains, the local strain concentration is rather moderate (tens of percents).


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 4) ◽  
Author(s):  
Yu Wang ◽  
Haonan Yang ◽  
Chun Zhu ◽  
Shaohua Gao

Abstract The preexistence of the geological discontinuities in cold regions is susceptible to freeze-thaw weathering and rock instability, and even the occurrence of geological hazards is strongly impacted by the discontinuities. Knowledge of how natural fracture affects the rock field deformation is crucial to rock stability prediction. This work is aimed at revealing the influences of freeze-thaw on failure process for pyrite-filled marble obtained from an open pit slope. All the tested marbles were selected to roughly have the same initial pyrite band; the full-field displacement and the progressive failure behaviors under uniaxial compression were qualitatively and quantitatively analyzed using 3D digital image correlation (3D DIC) technique. The testing results show that the previous freeze-thaw action weakens the cementation between the rock matrix and pyrite band; the peak stress and strain are obviously impacted by the freeze-thaw treatment. In addition, the stimulation of pyrite bands influences the displacement development and high strain concentration pattern. The stimulation of pyrite band results in the formation of strain concentration zone, and shear sliding occurs until rock failure. Moreover, it is found that the stimulation of pyrite band and its localized strain takes place progressively and develops fast for marble exposed to higher freeze-thaw treatment. It is suggested that the field deformation development depends on the stimulation of the pyrite bands.


2021 ◽  
Author(s):  
GIOVANNI ZUCCO ◽  
MOHAMMAD ROUHI ◽  
OLIVERI VINCENZO ◽  
ENZO COSENTINO ◽  
RONAN O’HIGGINS ◽  
...  

Cut-outs are inevitable in many structural components such as in aircrafts to accommodate windows or openings for access purposes or fasteners. Engineers usually view cut-outs, especially in primary structures, with disfavour as they result in stress/strain concentration and consequently reduced load carrying capability. Local reinforcements usually increase cost and weight to the overall design which is not favourable in aerospace applications. In case of composite panels, emerging advanced manufacturing methods such as 3D printing of automated fiber placement made it possible to continuously steer fibers/tows around a cut-out to potentially alleviate stress/strain concentration problem. Another advantage of tow steering in this case is maintaining the continuity of fiber/tow paths without any fiber cut which precludes ply-level, 3D stress/strain concentration which could otherwise lead to delaminationinduced damage. In this study, potential capability of tow steering around an elliptical cut-out (manhole) in reducing stress/strain concentration in a composite wingbox is investigated Buckling response under compression loading together with stress and strain concentrations under both tensile and compression loads are examined. Under tensile loading, the maximum stress and strain concentration factors around the cut-out in the straight fiber design are shown to be approximately 29% and 32% larger than its counterpart with steered tows around the cut-out. For the compression loading condition, the direct strain of the panel with straight fiber orientations was found to be three times that of steered fiber trajectories in the vicinity of the cut-out.


Author(s):  
Yuka Yokoyama ◽  
Yoshitaka Kameo ◽  
Hiroshi Kamioka ◽  
Taiji Adachi

AbstractOsteocytes are vital for regulating bone remodeling by sensing the flow-induced mechanical stimuli applied to their cell processes. In this mechanosensing mechanism, tethering elements (TEs) connecting the osteocyte process with the canalicular wall potentially amplify the strain on the osteocyte processes. The ultrastructure of the osteocyte processes and canaliculi can be visualized at a nanometer scale using high-resolution imaging via ultra-high voltage electron microscopy (UHVEM). Moreover, the irregular shapes of the osteocyte processes and the canaliculi, including the TEs in the canalicular space, should considerably influence the mechanical stimuli applied to the osteocytes. This study aims to characterize the roles of the ultrastructure of osteocyte processes and canaliculi in the mechanism of osteocyte mechanosensing. Thus, we constructed a high-resolution image-based model of an osteocyte process and a canaliculus using UHVEM tomography and investigated the distribution and magnitude of flow-induced local strain on the osteocyte process by performing fluid–structure interaction simulation. The analysis results reveal that local strain concentration in the osteocyte process was induced by a small number of TEs with high tension, which were inclined depending on the irregular shapes of osteocyte processes and canaliculi. Therefore, this study could provide meaningful insights into the effect of ultrastructure of osteocyte processes and canaliculi on the osteocyte mechanosensing mechanism.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4429
Author(s):  
Kyu-hwan Oh ◽  
Soo-yeon Kim

When a crack occurs under an installed waterproofing material and moves due to environmental effects (freeze–thaw, settlement, vibration, dead load, etc.), waterproofing materials without adequate elongation or tensile strength properties may break and tear. To enable the selection of materials with proper response against the strain that occur during crack movement, this study proposes and demonstrates a new evaluation method for determining and comparing strain concentration of waterproofing materials under the effect of concrete crack movement. For the proposed testing method and demonstration, three common types of waterproofing material types were selected for testing, poly-urethane coating (PUC), self-adhesive asphalt sheet (SAS) and composite asphalt sheet (CAS). Respective materials are installed with strain gauges and applied onto a specimen with a separated joint that undergoes concrete crack movement simulation. Each specimen types are subject to repeated movement cycles, whereby strain occurring directly above the moving joint is measured and compared with the strain occurring at the localized sections (comparison ratio which is hereafter referred to as strain concentration ratio). Specimens are tested under four separate movement length conditions, 1.5 mm, 3.0 mm, 4.5 mm and 6.0 mm, and the results are compared accordingly. Experimental results show that materials with strain concentration ratio from highest to lowest are as follows: PUC, SAS and CAS.


2021 ◽  
pp. 2150003
Author(s):  
Zixu Guo ◽  
Ziyuan Song ◽  
Dawei Huang ◽  
Xiaojun Yan

In this paper, a digital image correlation (DIC) method is developed and applied on film cooling holes in the submillimeter scale in high temperature. Compared with the traditional DIC method, the speckle patterning method and the optical system are improved. In detail, a kind of high temperature-resistant black paint is selected as the basecoat, and the white ZrO2 particles are evenly distributed on the specimen using high-pressure splashing method. Besides, to eliminate the radiation effect of the high-temperature specimen, the blue light source is used to illuminate the specimen, and the optical bandpass filter is placed in front of the camera to allow the blue light passing. In order to verify the DIC method, the strain measurement on a specimen with single skew hole is performed. The relative error in high temperature of the maximum strain between the measurement results and the numerical simulation results given by the finite element method (FEM) is 12%. The strain concentration factor of the single skew hole is measured as 1.83. Finally, the developed method is applied to the strain measurement of the structure with multiple film cooling holes in 870°C. The X-shape strain distribution can be observed at the hole with maximum stress, which suggests that the strain field of multiple holes has coupling effect. In addition, the strain concentration factor of multiple film cooling holes increases to 2.34.


Sign in / Sign up

Export Citation Format

Share Document