Solid Oxide Fuel Cell System and the Economical Feasibility

2006 ◽  
Vol 3 (3) ◽  
pp. 242-253 ◽  
Author(s):  
Erkko Fontell ◽  
Tho Phan ◽  
Timo Kivisaari ◽  
Kimmo Keränen

In the paper, a solid oxide fuel cell (SOFC) system is briefly described and its economical feasibility in three different applications is analyzed. In the feasibility analysis, the SOFC system is part of commercial applications where energy is used for power and heat generation. In the economical analysis, the three applications have different load profiles which are studied separately at different geographical locations with associated local energy market conditions. The price for natural gas and electricity varies by location, leading to a different feasibility condition for stationary fuel cell application as well as for other distributed generation equipment. In the study, the spark spread of natural gas and electricity is used as a base variable for the analysis. The feasibility is analyzed in the case of an electricity-only application as well as with two combined heat and power applications, where an economical value is assigned to the produced and consumed heat. The impact on economical competitiveness of possible incentives for the generated fuel cell power is estimated. A sensitivity analysis with different fuel cell-units’ electrical efficiency, maintenance cost, and payback period is presented. Finally, the maximum allowed investment cost levels for the SOFC system at different locations and market conditions is presented.

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5847
Author(s):  
Niccolò Caramanico ◽  
Giuseppe Di Di Florio ◽  
Maria Camilla Baratto ◽  
Viviana Cigolotti ◽  
Riccardo Basosi ◽  
...  

The building sector is one of the key energy consumers worldwide. Fuel cell micro-Cogeneration Heat and Power systems for residential and small commercial applications are proposed as one of the most promising innovations contributing to the transition towards a sustainable energy infrastructure. For the application and the diffusion of these systems, in addition to their environmental performance, it is necessary, however, to evaluate their economic feasibility. In this paper a life cycle assessment of a fuel cell/photovoltaic hybrid micro-cogeneration heat and power system for a residential building is integrated with a detailed economic analysis. Financial indicators (net present cost and payback time are used for studying two different investments: reversible-Solid Oxide Fuel Cell and natural gas SOFC in comparison to a base scenario, using a homeowner perspective approach. Moreover, two alternative incentives scenarios are analysed and applied: net metering and self-consumers’ groups (or energy communities). Results show that both systems obtain annual savings, but their high capital costs still would make the investments not profitable. However, the natural gas Solide Oxide Fuel Cell with the net metering incentive is the best scenario among all. On the contrary, the reversible-Solid Oxide Fuel Cell maximizes its economic performance only when the self-consumers’ groups incentive is applied. For a complete life cycle cost analysis, environmental impacts are monetized using three different monetization methods with the aim to internalize (considering them into direct cost) the externalities (environmental costs). If externalities are considered as an effective cost, the natural gas Solide Oxide Fuel Cell system increases its saving because its environmental impact is lower than in the base case one, while the reversible-Solid Oxide Fuel Cell system reduces it.


2020 ◽  
Vol 96 (1) ◽  
pp. 133-148
Author(s):  
Alejandra Hormaza Mejia ◽  
Masaya Yoshioka ◽  
Jun Yong Kim ◽  
Jack Brouwer

2010 ◽  
Vol 195 (5) ◽  
pp. 1454-1462 ◽  
Author(s):  
Tzu-Hsiang Yen ◽  
Wen-Tang Hong ◽  
Wei-Ping Huang ◽  
Yu-Ching Tsai ◽  
Hung-Yu Wang ◽  
...  

2015 ◽  
Vol 13 (7) ◽  
pp. 730-735
Author(s):  
Wen-Tang Hong ◽  
Ya-Ling Wu ◽  
Tzu-Hsiang Yen ◽  
Cheng-Nan Huang ◽  
Hsueh-I Tan ◽  
...  

2015 ◽  
Vol 81 ◽  
pp. 400-410 ◽  
Author(s):  
Junxi Jia ◽  
Abuliti Abudula ◽  
Liming Wei ◽  
Baozhi Sun ◽  
Yue Shi

Sign in / Sign up

Export Citation Format

Share Document