gas burner
Recently Published Documents


TOTAL DOCUMENTS

253
(FIVE YEARS 52)

H-INDEX

10
(FIVE YEARS 1)

Author(s):  
Matthias Kuba ◽  
Florian Benedikt ◽  
Katharina Fürsatz ◽  
Josef Fuchs ◽  
Martin Demuth ◽  
...  

AbstractThe pulp and paper industry represents an industry sector which is characterised by its already high degree of sustainability. Biomass is a renewable input material, and typically highly developed recovery cycles minimise the loss of chemicals used in the pulping process. However, certain parts of the recovery cycle are still operated on fossil fuels. This study deals with the substitution of the fossil-based gaseous fuel with product gas from biomass gasification.Gasification experiments have shown that bark available at pulp and paper mills is suitable to produce a product gas via dual fluidised bed steam gasification as a promising substitute for natural gas. Based on the comparison of process layouts regarding the separation of non-process elements, separation efficiency is derived for different setups. To ensure operational security of the chemical recovery cycle, comprehensive gas cleaning including heat exchangers, a particle filter, and a liquid scrubber unit is advised. The gas flow of fuel gas into the gas burner is increased as the heating value of the product gas is accordingly lower in comparison to natural gas. Furthermore, adaptions of the gas burner might be necessary to address the earlier ignition of the H2-rich product gas compared to natural gas.


Author(s):  
I.Ya. Sigal ◽  
E.M. Lavrentsov ◽  
A.V. Smikhula ◽  
O.V. Marasin ◽  
E.P. Dombrovska

The possibility of modernization of boilers TVH-8M, TVH-8 and NYYSTU-5, operated in Ukraine, with the increasing of their technical and economic indicators to the modern European level is shown. Projects of modernization of boilers have been developed, which consist in redesign of heating surfaces in convective shafts of existing boilers without increasing their overall dimensions with using convective part of pipes diameter 32 x 3 mm and replacement of burner devices by developed new type MPIG-3. It is shown that the results of industrial implementations achieved efficiency of boilers type TVH-8M (TVH-8) 94-96% in the operating range of their load and obtained the calculated efficiency for boilers NYYSTU-5 92-94%. It is experimentally proven that when installing special calibrated nozzle, instead of drilled holes in the collectors of gas burners, it is possible to keep the nozzle geometry (natural gas burner consumption depending on pressure) unchanged throughout the service life. The technical possibility of combustion of biogas and mixtures of natural gas and hydrogen in the slot bottom diffusion burners of the MPIG-3 type, when replacing only the nozzle apparatus is shown. Bibl. 17, Fig. 6, Table 1.


Wood Research ◽  
2021 ◽  
Vol 66 (6) ◽  
pp. 969-980
Author(s):  
VLADIMÍR MÓZER ◽  
PETR HEJTMÁNEK ◽  
DANIELA PITELKOVÁ ◽  
LUCIE HASALOVÁ

This paper presents a series of full-scale tests conducted with office furniture made from OSB boards. Ignition source (30 kW gas burner) position and enclosure effects, free burn vs. ISO 9705 room, were evaluated from the perspective of instantaneous (HRR) and total heat (THR) released by the fuel packages. It was found that both of the evaluated factors have impact primarily on HRR – the peak ranging from 874 kW to 1 154 kW was delayed by approx. 50 to 60 s in the free-burn experiments; the THR remained relatively consistent at approx. 875 ± 30 MJ, meaning that in the observed period very similar amounts of fuel were burned. The thermal feedback within the enclosure seemed to be partially counteracted by the lack of oxygen, resulting in slightly higher HRR in free-burn test following the first peak. The findings of the research are applicable to fire hazard prediction by fire modelling.


Data in Brief ◽  
2021 ◽  
pp. 107624
Author(s):  
Mark McKinnon ◽  
Craig Weinschenk ◽  
Daniel Madrzykowski ◽  
Keith Stakes
Keyword(s):  

Author(s):  
Lyudmila Prysyazhnyuk ◽  
Ihor Petryshyn ◽  
Bohdan Dolishnii ◽  
Liubomyr Ropyak

Abstract Natural gas quality assessment is a relevant issue. A critical analysis of calorimeter designs for measuring the calorific value of natural gas was carried out. The most common methods for determining the calorific value of natural gas are as follows: direct by gas calorimeters; indirect by gas chromatographs; indirect, based on correlations. The advantages of isoperibolic calorimeters of measuring calorific value of natural gas directly in the consumer’s conditions are substantiated. The design of a portable calorimeter containing a thermostated shell, calorimetric tank, Peltier element with tank, circulating pump, gas burner, thermostat systems, metered supply of natural gas and air, fuel ignition, sensors, combustion analyzer and control and measurement unit, was developed. The geometric dimensions of the calorimetric tank are optimized, materials and technologies of manufacturing parts are specified. The metrological analysis of the developed portable calorimeter was carried out. A method for measuring the calorific value of natural gas directly in the conditions of household consumers and transport enterprises was developed. The results of testing the prototype calorimeter in the laboratory confirmed its high performance and metrological characteristics, and the deviation of the measurement of the calorific value of natural gas from that determined using a gas chromatograph was 0.6%.


Author(s):  
R. Ramazanov ◽  
D. Suslov ◽  
L. Kuschev ◽  
A. Seminenko ◽  
Valerij Uvarov

The main thermal processes occurring during the operation of a gas burner device for household use are considered. One of the important functions performed by the gas burner device is the preparation of fuel for subsequent combustion. The efficiency and quality of the combustion process directly depends on the temperature of the gas-air mixture. Since an increase in the temperature of the mixture contributes to the intensification of the combustion process, when designing gas burner devices, it is useful to determine the temperature of the gas-air mixture inside the burner body. We have proposed a solution that makes it possible to increase the efficiency of the gas burner device by intensifying the preheating from the thermal divider to the gas-air mixture inside the body of the gas burner. It has been established that the placement of the thermal divider in the central part on the inner side of the cover allows one to reduce the stagnant zone area when the flow of the gas-air mixture moves, and the conical shape of the thermal divider provides minimal resistance to the movement of the gas-air mixture flow inside the gas burner, in addition, the side surface of the thermal divider additionally increases the area heat transfer. An expression is obtained for calculating the average temperature of the gas-air mixture at the outlet from the firing holes of the gas burner.


Author(s):  
Hongchao Dai ◽  
Huaming Dai ◽  
Huiwei Zhu ◽  
Bingqian Zhang ◽  
Song He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document