Operating Microtubular SOFCS With Hydrogen Chloride and Hydrogen Sulfide Containing Fuels and Synthetic Wood Gas

2006 ◽  
Vol 3 (3) ◽  
pp. 280-283 ◽  
Author(s):  
Gerhard Buchinger ◽  
Paul Hinterreiter ◽  
Thomas Raab ◽  
Stefan Griesser ◽  
Richard Claassen ◽  
...  

Solid oxide fuel cells are known to be able to handle a large variety of different fuels. Because of the greenhouse effect the use of carbon dioxide neutral gases or liquids are of special interest. In this context wood-gas has a big potential to be an alternative fuel for solid oxide fuel cells (SOFCs). The gas is generated by a fluidized bed steam gasifier and consists of various components such as 25 Vol % carbon monoxide, 20 Vol % carbon dioxide, 10 Vol % methane, 2.5 Vol % ethylene, 0.5 Vol % propylene, 2 Vol % nitrogen, and the rest hydrogen (values in dry state). The water concentration of the original pyrolysis gas is about 35 Vol %. Besides these main ingredients there are of course many impurities like dust, tars, ammonia, hydrogen sulphide, and hydrogen chloride present in the product gas. Especially the last two ones may lead to degeneration of the fuel cell anode and must therefore be almost totally removed before feeding the gas into the cell. In order to reduce energy losses, hot gas cleaning systems are favored. This, however, limits the possibility to reduce the impurity concentrations to very low levels. Therefore the aim of this work is to define the maximum acceptable output concentrations for the hydrogen chloride adsorber also in combination with hydrogen sulphide, since for a micro-tubular SOFC there are as yet hardly any data available. In order to determine the influence of the hydrogen chloride on the performance of the fuel cell, different concentrations of this impurity were fed to the cell. Here, also the flow rate was changed while the electrochemical output was determined. In addition it was analyzed if there were any effects when changing from pure hydrogen to the HCl containing fuel. This was investigated at 1123 K and 1173 K, which are the preferred working temperatures for our cells. Cooling down as well as heating up procedures were tested with cells between 1173 K and 573 K. In a second series of experiments, combinations of hydrogen chloride and hydrogen sulphide of variable concentrations were tested. As before, changing between pure hydrogen and the acid containing fuel at above given temperatures was analyzed by determining the cell performance. In parallel to the above experiments, synthetic wood gas was used for operating the microtubular fuel cell while monitoring the electrochemical output with time.

RSC Advances ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 7-14
Author(s):  
Cheng Cheng Wang ◽  
Mortaza Gholizadeh ◽  
Bingxue Hou ◽  
Xincan Fan

Strontium segregation in a La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) electrode reacts with Cr and S in a solid oxide fuel cell (SOFC), which can cause cell performance deterioration.


2017 ◽  
Vol 10 (4) ◽  
pp. 964-971 ◽  
Author(s):  
Yu Chen ◽  
Yan Chen ◽  
Dong Ding ◽  
Yong Ding ◽  
YongMan Choi ◽  
...  

A hybrid catalyst coating dramatically enhances the electrocatalytic activity and durability of a solid oxide fuel cell cathode.


Author(s):  
Z. F. Zhou ◽  
R. Kumar ◽  
S. T. Thakur ◽  
L. R. Rudnick ◽  
H. Schobert ◽  
...  

Solid oxide fuel cells with ceria, ceria-Cu, and ceria-Rh anode were demonstrated to generate stable electric power with waste vegetable oil through direct oxidation of the fuel. The only pre-treatment to the fuel was a filtration to remove particulates. The performance of the fuel cell was stable over 100 hours for the waste vegetable oil without dilution. The generated power was up to 0.25 W/cm2 for ceria-Rh fuel cell. This compares favorably with previously studied hydrocarbon fuels including jet fuels and Pennsylvania crude oil.


Author(s):  
Helgi S. Fridriksson ◽  
Bengt Sunde´n ◽  
Jinliang Yuan ◽  
Martin Andersson

Solid oxide fuel cells (SOFCs) have the attractive feature to be able to make use of hydrocarbon fuels in their operation by reforming the fuel into pure hydrogen, either internally or externally. This can open up for a smoother transition from the existing hydro-carbon economy toward a more renewable hydrogen economy. Since both SOFCs and internal combustion (IC) engines can make use of hydrocarbon fuels, it is of interest to examine the major differences in their utilization of the hydrocarbons and investigate how this type of fuel contributes to the power output of the respective systems. Thereby, various advantages and disadvantages of their reactions are raised. It was shown that even though there are fundamental differences between SOFCs and IC engines, both types face similar problems in their designs. These problems mostly include material design and operation management, but even problems related to the chemical reactions, e.g., carbon deposition for SOFCs and pollutant formation for IC engines.


Author(s):  
Zongping Shao ◽  
Jennifer Mederos ◽  
Chan Kwak ◽  
Sossina M. Haile

The compound Bi2V0.9Cu0.1O5.35, a typical Aurivillius-type fast oxygen ion conductor, was evaluated as a possible cathode material for single-chamber solid-oxide fuel cells operated under mixed propane and oxygen. The material was found to be structurally stable under various C3H8+O2 environments over a wide temperature range and furthermore displayed low catalytic activity for propane oxidation. However, at temperatures above 650°C, detrimental reactions between the cathode and the ceria electrolyte occurred, producing low conductivity interfacial phases. At these high temperatures the cathode additionally underwent extensive sintering and loss of porosity and, thus, stable fuel cell operation was limited to furnace temperatures of <600°C. Even under such conditions, however, the partial oxidation occurring at the anode (a ceria nickel cermet) resulted in cell temperatures as much as 70–110°C higher than the gas-phase temperature. This explains the sharp decrease in fuel cell performance with time during operation at a furnace temperature of 586°C. Under optimized conditions, a peak power density of ∼60 mW/cm2 was obtained, which does not compete with recent values obtained from higher activity cathodes. Thus, the poor electrochemical activity of Bi2V0.9Cu0.1O5.35, combined with its chemical instability at higher temperatures, discourages further consideration of this material as a cathode in single-chamber fuel cells.


Sign in / Sign up

Export Citation Format

Share Document