A CT-Based High-Order Finite Element Analysis of the Human Proximal Femur Compared to In-vitro Experiments

2006 ◽  
Vol 129 (3) ◽  
pp. 297-309 ◽  
Author(s):  
Zohar Yosibash ◽  
Royi Padan ◽  
Leo Joskowicz ◽  
Charles Milgrom

The prediction of patient-specific proximal femur mechanical response to various load conditions is of major clinical importance in orthopaedics. This paper presents a novel, empirically validated high-order finite element method (FEM) for simulating the bone response to loads. A model of the bone geometry was constructed from a quantitative computerized tomography (QCT) scan using smooth surfaces for both the cortical and trabecular regions. Inhomogeneous isotropic elastic properties were assigned to the finite element model using distinct continuous spatial fields for each region. The Young’s modulus was represented as a continuous function computed by a least mean squares method. p-FEMs were used to bound the simulation numerical error and to quantify the modeling assumptions. We validated the FE results with in-vitro experiments on a fresh-frozen femur loaded by a quasi-static force of up to 1500N at four different angles. We measured the vertical displacement and strains at various locations and investigated the sensitivity of the simulation. Good agreement was found for the displacements, and a fair agreement found in the measured strain in some of the locations. The presented study is a first step toward a reliable p-FEM simulation of human femurs based on QCT data for clinical computer aided decision making.

2011 ◽  
Vol 133 (6) ◽  
Author(s):  
Nir Trabelsi ◽  
Zohar Yosibash

Patient-specific high order finite-element (FE) models of human femurs based on quantitative computer tomography (QCT) with inhomogeneous orthotropic and isotropic material properties are addressed. The point-wise orthotropic properties are determined by a micromechanics (MM) based approach in conjunction with experimental observations at the osteon level, and two methods for determining the material trajectories are proposed (along organs outer surface, or along principal strains). QCT scans on four fresh-frozen human femurs were performed and high-order FE models were generated with either inhomogeneous MM-based orthotropic or empirically determined isotropic properties. In vitro experiments were conducted on the femurs by applying a simple stance position load on their head, recording strains on femurs’ surface and head’s displacements. After verifying the FE linear elastic analyses that mimic the experimental setting for numerical accuracy, we compared the FE results to the experimental observations to identify the influence of material properties on models’ predictions. The strains and displacements computed by FE models having MM-based inhomogeneous orthotropic properties match the FE-results having empirically based isotropic properties well, and both are in close agreement with the experimental results. When only the strains in the femoral neck are being compared a more pronounced difference is noticed between the isotropic and orthotropic FE result. These results lay the foundation for applying more realistic inhomogeneous orthotropic material properties in FEA of femurs.


2019 ◽  
Vol 86 ◽  
pp. 149-159 ◽  
Author(s):  
Yekutiel Katz ◽  
Gal Dahan ◽  
Jacob Sosna ◽  
Ilan Shelef ◽  
Evgenia Cherniavsky ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Charles Savoldelli ◽  
Elodie Ehrmann ◽  
Yannick Tillier

AbstractWith modern-day technical advances, high sagittal oblique osteotomy (HSOO) of the mandible was recently described as an alternative to bilateral sagittal split osteotomy for the correction of mandibular skeletal deformities. However, neither in vitro nor numerical biomechanical assessments have evaluated the performance of fixation methods in HSOO. The aim of this study was to compare the biomechanical characteristics and stress distribution in bone and osteosynthesis fixations when using different designs and placing configurations, in order to determine a favourable plating method. We established two finite element models of HSOO with advancement (T1) and set-back (T2) movements of the mandible. Six different configurations of fixation of the ramus, progressively loaded by a constant force, were assessed for each model. The von Mises stress distribution in fixations and in bone, and bony segment displacement, were analysed. The lowest mechanical stresses and minimal gradient of displacement between the proximal and distal bony segments were detected in the combined one-third anterior- and posterior-positioned double mini-plate T1 and T2 models. This suggests that the appropriate method to correct mandibular deformities in HSOO surgery is with use of double mini-plates positioned in the anterior one-third and posterior one-third between the bony segments of the ramus.


Sign in / Sign up

Export Citation Format

Share Document