Local Temperature Rises Influence In Vivo Electroporation Pore Development: A Numerical Stratum Corneum Lipid Phase Transition Model

2007 ◽  
Vol 129 (5) ◽  
pp. 712-721 ◽  
Author(s):  
S. M. Becker ◽  
A. V. Kuznetsov

Electroporation is an approach used to enhance transdermal transport of large molecules in which the skin is exposed to a series of electric pulses. Electroporation temporarily destabilizes the structure of the outer skin layer, the stratum corneum, by creating microscopic pores through which agents, ordinarily unable to pass into the skin, are able to pass through this outer barrier. Long duration electroporation pulses can cause localized temperature rises, which result in thermotropic phase transitions within the lipid bilayer matrix of the stratum corneum. This paper focuses on electroporation pore development resulting from localized Joule heating. This study presents a theoretical model of electroporation, which incorporates stratum corneum lipid melting with electrical and thermal energy equations. A transient finite volume model is developed representing electroporation of in vivo human skin, in which stratum corneum lipid phase transitions are modeled as a series of melting processes. The results confirm that applied voltage to the skin results in high current densities within the less resistive regions of the stratum corneum. The model captures highly localized Joule heating within the stratum corneum and subsequent temperature rises, which propagate radially outward. Electroporation pore development resulting from the decrease in resistance associated with lipid melting is captured by the lipid phase transition model. As the effective pore radius grows, current density and subsequent Joule heating values decrease.

Biochemistry ◽  
1987 ◽  
Vol 26 (8) ◽  
pp. 2382-2388 ◽  
Author(s):  
Guia M. Golden ◽  
Donald B. Guzek ◽  
Alane E. Kennedy ◽  
James E. McKie ◽  
Russell O. Potts

1988 ◽  
Vol 255 (3) ◽  
pp. 977-981 ◽  
Author(s):  
M Woźniak ◽  
E Kossowska ◽  
J Purzycka-Preis ◽  
M M Zydowo

Phosphatidate bilayers composed of dilauroylphosphatidate, dimyristoylphosphatidate, dipalmitoylphosphatidate and dioleoylphosphatidate were prepared. Their interaction with AMP deaminase isolated from pig heart was investigated. Dioleoylphosphatidate bilayers were found to exert non-competitive inhibition on the AMP deaminase with a Ki of 15 x 10(-6) M. This inhibition is three orders of magnitude stronger than that exerted by orthophosphate. The phosphatidate species containing saturated fatty acids were either non-inhibitory or inhibited enzyme activity rather poorly. However, alkalinization of the medium from pH 6.5 to pH 7.9 led to the inhibition of pig heart AMP deaminase by dilauroylphosphatidate bilayers. This was accompanied by the fluidization of the saturated phosphatidate species, i.e. the lowering of their phase transition temperature in alkaline pH, as measured by light-scattering and fluorescence scans. The possible significance of these findings for the regulation of AMP deaminase activity in vivo by natural membranes is discussed.


1984 ◽  
Vol 62 (11) ◽  
pp. 1134-1150 ◽  
Author(s):  
P. M. Macdonald ◽  
B. D. Sykes ◽  
R. N. McElhaney

The orientational order parameters of monofluoropalmitic acids biosynthetically incorporated into membranes of Acholeplasma laidlawii B in the presence of a large excess of a variety of structurally diverse fatty acids have been determined via 19F nuclear magnetic resonance (19F NMR) spectroscopy. It is demonstrated that these monofluoropalmitic acids are relatively nonperturbing membrane probes based upon physical (differential scanning calorimetry), biochemical (membrane lipid analysis), and biological (growth studies) criteria. 19F NMR is shown to convey the same qualitative and quantitative picture of membrane lipid order provided by 2H-NMR techniques and to be sensitive to the structural characteristics of the membrane fatty acyl chains, as well as to the lipid phase transition. Representatives of each naturally occurring class of fatty acyl chain structures, including straight-chain saturated, methyl-branched, monounsaturated, and alicyclic-ring-substituted fatty acids, were studied and the 19F-NMR order parameters were correlated with the lipid phase transitions (determined calorimetrically). The lipid phase transition was the prime determinant of overall orientational order regardless of fatty acid structure. Effects upon orientational order attributable to specific structural substituents were discernible, but were secondary to the effects of the lipid phase transition. In the gel state, relative overall order was directly proportional to the temperature of the particular lipid phase transition. Not only the overall order, but also the order profile across the membrane was sensitive to the presence of particular structural substituents. In particular, in the gel state specific fatty acyl structures demonstrated a characteristic disordering effect in the membrane order profile. These various observations can be merged to provide a unified picture of the manner in which fatty acyl chain chemistry modulates the physical state of membrane lipids.


Sign in / Sign up

Export Citation Format

Share Document