A Sensitivity-Based Method for Direct Stochastic Analysis of Nonlinear Forced Response for Bladed Disks With Friction Interfaces

Author(s):  
E. P. Petrov

An efficient method is developed to calculate stochastic and uncertainty characteristics of forced response for nonlinear vibrations of bladed disks with friction and gap contact interfaces. Uncertainty ranges, statistical characteristics, and probability density functions for forced response levels are determined directly without any sampling procedure. The method uses approximations of the forced response level based on derived analytically and calculated extremely fast and accurately sensitivity coefficients of forced response with respect to friction contact interface parameters. The method effectiveness allows analysis of strongly nonlinear vibration of bladed disks using realistic large-scale finite element models. The method is implemented in a program code developed at Imperial College and numerical examples of application of the method for stochastic analysis of a realistic blisc with underplatform dampers are provided.

Author(s):  
E. P. Petrov

An efficient method is developed to calculate stochastic and uncertainty characteristics of forced response for nonlinear vibrations of bladed discs with friction and gap contact interfaces. Uncertainty ranges, statistical characteristics and probability density functions for forced response levels are determined directly without any sampling procedure. The method uses approximations of the forced response level based on derived analytically and calculated extremely fast and accurately sensitivity coefficients of forced response with respect to friction contact interface parameters. The method effectiveness allows analysis of strongly nonlinear vibration of bladed discs using realistic large-scale FE element models. The method is implemented in a program code developed at Imperial College and numerical examples of application of the method for stochastic analysis of a realistic blisc with underplatform dampers are provided.


2004 ◽  
Vol 126 (4) ◽  
pp. 654-662 ◽  
Author(s):  
E. P. Petrov

An effective method for direct parametric analysis of periodic nonlinear forced response of bladed disks with friction contact interfaces has been developed. The method allows, forced response levels to be calculated directly as a function of contact interface parameters such as the friction coefficient, contact surface stiffness (normal and tangential coefficients), clearances, interferences, and the normal stresses at the contact interfaces. The method is based on exact expressions for sensitivities of the multiharmonic interaction forces with respect to variation of all parameters of the friction contact interfaces. These novel expressions are derived in the paper for a friction contact model, accounting for the normal load variation and the possibility of separation-contact transitions. Numerical analysis of effects of the contact parameters on forced response levels has been performed using large-scale finite element models of a practical bladed turbine disk with underplatform dampers and with shroud contacts.


Author(s):  
E. P. Petrov

An effective method has been developed to calculate the sensitivity of the resonance peak frequency and forced response level to variation of parameters of nonlinear friction contact interfaces and excitation. The method allows determination of the sensitivity characteristics simultaneously with the resonance peak frequency and response level calculated as a function of any parameter of interest and without significant computational expense. Capabilities of the method are demonstrated on examples of analysis of large-scale finite element models of realistic bladed disks with major types of the nonlinear contact interfaces: (i) a blisk with underplatform dampers, (ii) a bladed disk with friction damping at blade fir-tree roots, and (iii) a high-pressure bladed disk with shroud contacts. The numerical investigations show high efficiency of the method proposed.


2006 ◽  
Vol 129 (3) ◽  
pp. 495-502 ◽  
Author(s):  
E. P. Petrov

A method has been developed to calculate directly resonance frequencies and resonance amplitudes as functions of design parameters or as a function of excitation levels. The method provides, for the first time, this capability for analysis of strongly nonlinear periodic vibrations of bladed disks and other structures with nonlinear interaction at contact interfaces. A criterion for determination of major, sub-, and superharmonic resonance peaks has been formulated. Analytical expressions have been derived for accurate evaluation of the criterion and for tracing resonance regimes as function of such contact interface parameters as gap and interference values, friction and contact stiffness coefficients, and normal stresses. High accuracy and efficiency of the new method have been demonstrated on numerical examples including a large-scale nonlinear bladed disk model and major types of contact interfaces including friction contact interfaces, gaps, and cubic nonlinearities.


2020 ◽  
Vol 17 (10) ◽  
pp. 2050012 ◽  
Author(s):  
Shiyuan Deng ◽  
Jianyao Yao ◽  
Linlin Wang ◽  
Jianqiang Xin ◽  
Ning Hu

The forced responses of bladed disks are highly sensitive to inevitable random mistuning. Considerable computational efforts are required for the sampling process to assess the statistical vibration properties of mistuned bladed disks. Therefore, efficient surrogate models are preferred to accelerate the process for probabilistic analysis. In this paper, four surrogate models are utilized to construct the relation between random mistuning and forced response amplitudes, which are polynomial chaos expansion (PCE), response surface method (RSM), artificial neural networks (ANN) and Kriging interpolation, respectively. A bladed disk with 2-degrees-of-freedom (2-DOF) each sector is used to validate the effectiveness of the surrogate models. The effects of number of training samples on the surrogate model accuracy are discussed. The responses results of one blade (single output) and maximum response of all blades (multi-output) indicate that PCE and Kriging interpolation could yield accurate and stable predictions of the statistical characteristics of the forced responses. PCE is recommended for the mistuned response predictions due to its accuracy and efficiency.


Author(s):  
E. P. Petrov

An effective method for direct parametric analysis of periodic nonlinear forced response of bladed discs with friction contact interfaces has been developed. The method allows, for the first time, forced response levels to be calculated directly as a function of contact interface parameters such as the friction coefficient, contact surface stiffness (normal and tangential coefficients), clearances, interferences, and the normal stresses at the contact interfaces. The method is based on exact expressions for sensitivities of the multiharmonic interaction forces with respect to variation of all parameters of the friction contact interfaces. These novel expressions are derived in the paper for a friction contact model, accounting for the normal load variation and the possibility of separation-contact transitions. Numerical analysis of effects of the contact parameters on forced response levels has been performed using large-scale finite element models of a practical bladed turbine disc with underplatform dampers and with shroud contacts.


Author(s):  
E. P. Petrov

An effective method has been developed to calculate sensitivity of the resonance peak frequency and forced response level to variation of parameters of nonlinear friction contact interfaces and excitation. The method allows determination of the sensitivity characteristics simultaneously with the resonance peak frequency and response level calculated as a function of any parameter of interest and without significant computational expense. Capabilities of the method are demonstrated on examples of analysis of large-scale finite element models of realistic bladed discs with major types of the nonlinear contact interfaces: (i) a blisk with underplatform dampers; (ii) a bladed disc with friction damping at blade fir-tree roots, and (iii) a high pressure bladed disc with shroud contacts. The numerical investigations show high efficiency of the method proposed.


Author(s):  
E. P. Petrov

A generic method for analysis of nonlinear forced response for bladed disks with friction dampers of different designs has been developed. The method uses explicit finite element modeling of dampers, which allows accurate description of flexibility and, for the first time, dynamic properties of dampers of different designs in multiharmonic analysis of bladed disks. Large-scale finite element damper and bladed disk models containing 104−106 degrees of freedom can be used. These models, together with detailed description of contact interactions over contact interface areas, allow for any level of refinement required for modeling of elastic damper bodies and for modeling of friction contact interactions. Numerical studies of realistic bladed disks have been performed with three different types of underplatform dampers: (i) a “cottage-roof” (also called “wedge”) damper, (ii) seal wire damper, and (iii) a strip damper. Effects of contact interface parameters and excitation levels on damping properties of the dampers and forced response are extensively explored.


Author(s):  
E. P. Petrov

A method has been developed to calculate directly resonance frequencies and resonance amplitudes as functions of design parameters or as a function of excitation levels. The method provides, for a first time, this capability for analysis of strongly nonlinear periodic vibrations of bladed discs and other structures with nonlinear interaction at contact interfaces. A criterion for determination of major, sub- and superharmonic resonance peaks has been formulated. Analytical expressions have been derived for accurate evaluation of the criterion and for tracing resonance regimes as function of such contact interface parameters as gap and interference values, friction and contact stiffness coefficients, normal stresses. High accuracy and efficiency of the new method have been demonstrated on numerical examples including large-scale nonlinear bladed disc model and major types of contact interfaces including friction contact interfaces, gaps and cubic nonlinearities.


2005 ◽  
Vol 127 (1) ◽  
pp. 128-136 ◽  
Author(s):  
E. P. Petrov ◽  
D. J. Ewins

An efficient method for analysis of nonlinear vibrations of mistuned bladed disk assemblies has been developed. This development has facilitated the use of large-scale finite element models for realistic bladed disks, used hitherto in analysis of linear vibration, to be extended for the analysis of nonlinear multiharmonic vibration. The new method is based on a technique for the exact condensation of nonlinear finite element models of mistuned bladed disks. The model condensation allows the size of the nonlinear equations to be reduced to the number of degrees of freedom where nonlinear interaction forces are applied. The analysis of nonlinear forced response for simplified and realistic models of mistuned bladed disks has been performed. For a practical high-pressure bladed turbine disk, several types of nonlinear forced response have been considered, including mistuning by (i) scatter of underplatform dampers, (ii) shroud gap scatter, and (iii) blade frequency scatter in the presence of nonlinear shroud interactions.


Sign in / Sign up

Export Citation Format

Share Document