Lyapunov Exponents and Stochastic Stability of Quasi-Integrable-Hamiltonian Systems

1999 ◽  
Vol 66 (1) ◽  
pp. 211-217 ◽  
Author(s):  
W. Q. Zhu ◽  
Z. L. Huang

The averaged equations of integrable and nonresonant Hamiltonian systems of multi-degree-of-freedom subject to light damping and real noise excitations of small intensities are first derived. Then, the expression for the largest Lyapunov exponent of the square root of the Hamiltonian is formulated by generalizing the well-known procedure due to Khasminskii to the averaged equations, from which the stochastic stability and bifurcation phenomena of the original systems can be determined approximately. Linear and nonlinear stochastic systems of two degrees-of-freedom are investigated to illustrate the application of the proposed combination approach of the stochastic averaging method for quasi-integrable Hamiltonian systems and Khasminskii’s procedure.

2012 ◽  
Vol 22 (04) ◽  
pp. 1250083 ◽  
Author(s):  
F. HU ◽  
W. Q. ZHU ◽  
L. C. CHEN

The stochastic Hopf bifurcation of multi-degree-of-freedom (MDOF) quasi-integrable Hamiltonian systems with fractional derivative damping is investigated. First, the averaged Itô stochastic differential equations for n motion integrals are obtained by using the stochastic averaging method for quasi-integrable Hamiltonian systems. Then, an expression for the average bifurcation parameter of the averaged system is obtained and a criterion for determining the stochastic Hopf bifurcation of the system by using the average bifurcation parameter is proposed. An example is given to illustrate the proposed procedure in detail and the numerical results show the effect of fractional derivative order on the stochastic Hopf bifurcation.


2021 ◽  
pp. 1-33
Author(s):  
Mao Lin Deng ◽  
Genjin Mu ◽  
Weiqiu Zhu

Abstract Many wake-oscillator models applied to study vortex-induced vibration (VIV) are assumed to be excited by ideal wind that is assumed to be uniform flow with constant velocity. While in the field of wind engineering, the real wind generally is described to be composed of mean wind and fluctuating wind. The wake-oscillator excited by fluctuating wind should be treated as a randomly excited and dissipated multi-degree of freedom (DOF) nonlinear system. The involved studies are very difficult and so far there are no exact solutions available. The present paper aims to carry out some study works on the stochastic dynamics of VIV. The stochastic averaging method of quasi integrable Hamiltonian systems under wideband random excitation is applied to study the Hartlen-Currie wake-oscillator model and its modified model excited by fluctuating wind. The probability and statistics of the random response of wake-oscillator in resonant or lock-in case and in non-resonant case are analytically obtained, and the theoretical results are confirmed by using numerical simulation of original system. Finally, it is pointed out that the stochastic averaging method of quasi integrable Hamiltonian systems under wideband random excitation can also be applied to other wake-oscillator models, such as Skop-Griffin model and Krenk-Nielsen model excited by fluctuating wind.


Author(s):  
F. Jedrzejewski

Stochastic stability plays an important role in modern theories of nonlinear structural dynamics. Recently, more realistic models based on stochastic modelling and Itoˆ calculus, like flow induced vibrations and seismic excitations have been proposed. In this paper, the almost-sure asymptotic stability of some hamiltonian systems subjected to stochastic fluctuations is investigated. Dynamical systems are reduced to Itoˆ stochastic differential equations for the averaged hamiltonian by using a new stochastic averaging method. The stability of the original system is determined approximately by examining the behavior of the averaged hamiltonian. Analytical expressions for the stochastic stability exponents are obtained. The proposed procedure is illustrated on the Rayleigh Van der Pol Oscillator.


Author(s):  
Lincong Chen ◽  
Fang Hu ◽  
Weiqiu Zhu

AbstractIn the present survey, some progress in the stochastic dynamics and fractional optimal control of quasi integrable Hamiltonian systems with fractional derivative damping is reviewed. First, the stochastic averaging method for quasi integrable Hamiltonian systems with fractional derivative damping under various random excitations is briefly introduced. Then, the stochastic stability, stochastic bifurcation, first passage time and reliability, and stochastic fractional optimal control of the systems studied by using the stochastic averaging method are summarized. The focus is placed on the effects of fractional derivative order on the dynamics and control of the systems. Finally, some possible extensions are pointed out.


1997 ◽  
Vol 64 (4) ◽  
pp. 975-984 ◽  
Author(s):  
W. Q. Zhu ◽  
Z. L. Huang ◽  
Y. Q. Yang

A stochastic averaging method is proposed to predict approximately the response of quasi-integrable Hamiltonian systems, i.e., multi-degree-of-freedom integrable Hamiltonian systems subject to lightly linear and (or) nonlinear dampings and weakly external and (or) parametric excitations of Gaussian white noises. According to the present method an n-dimensional averaged Fokker-Planck-Kolmogrov (FPK) equation governing the transition probability density of n action variables or n independent integrals of motion can be constructed in nonresonant case. In a resonant case with α resonant relations, an (n + α)-dimensional averaged FPK equation governing the transition probability density of n action variables and α combinations of phase angles can be obtained. The procedures for obtaining the stationary solutions of the averaged FPK equations for both resonant and nonresonant cases are presented. It is pointed out that the Stratonovich stochastic averaging and the stochastic averaging of energy envelope are two special cases of the present stochastic averaging. Two examples are given to illustrate the application and validity of the proposed method.


Author(s):  
Jiaojiao Sun ◽  
Zuguang Ying ◽  
Ronghua Huan ◽  
Weiqiu Zhu

A closed-loop controlled system usually consists of the main structure, sensors, and actuators. In this paper, asymptotic stability of trivial solutions of a controlled nonlinear stochastic system considering the dynamics of sensors and actuators is investigated. Considering the inherent and intentional nonlinearities and random loadings, the coupled dynamic equations of the controlled system with sensors and actuators are given, which are further formulated by a controlled, randomly excited, dissipated Hamiltonian system. The Hamiltonian of the controlled system is introduced, and, based on the stochastic averaging method, the original high-dimensional system is reduced to a one-dimensional averaged system. The analytical expression of Lyapunov exponent of the averaged system is derived, which gives the approximately necessary and sufficient condition of the asymptotic stability of trivial solutions of the original high-dimensional system. The validation of the proposed method is demonstrated by a four-degree-of-freedom controlled system under pure stochastically parametric excitations in detail. A comparative analysis, which is related to the stochastic asymptotic stability of the system with and without considering the dynamics of sensors and actuators, is carried out to investigate the effect of their dynamics on the motion of the controlled system. Results show that ignoring the dynamics of sensors and actuators will get a shrink stable region of the controlled system.


Sign in / Sign up

Export Citation Format

Share Document