Stochastic dynamics and fractional optimal control of quasi integrable Hamiltonian systems with fractional derivative damping

Author(s):  
Lincong Chen ◽  
Fang Hu ◽  
Weiqiu Zhu

AbstractIn the present survey, some progress in the stochastic dynamics and fractional optimal control of quasi integrable Hamiltonian systems with fractional derivative damping is reviewed. First, the stochastic averaging method for quasi integrable Hamiltonian systems with fractional derivative damping under various random excitations is briefly introduced. Then, the stochastic stability, stochastic bifurcation, first passage time and reliability, and stochastic fractional optimal control of the systems studied by using the stochastic averaging method are summarized. The focus is placed on the effects of fractional derivative order on the dynamics and control of the systems. Finally, some possible extensions are pointed out.

2012 ◽  
Vol 22 (04) ◽  
pp. 1250083 ◽  
Author(s):  
F. HU ◽  
W. Q. ZHU ◽  
L. C. CHEN

The stochastic Hopf bifurcation of multi-degree-of-freedom (MDOF) quasi-integrable Hamiltonian systems with fractional derivative damping is investigated. First, the averaged Itô stochastic differential equations for n motion integrals are obtained by using the stochastic averaging method for quasi-integrable Hamiltonian systems. Then, an expression for the average bifurcation parameter of the averaged system is obtained and a criterion for determining the stochastic Hopf bifurcation of the system by using the average bifurcation parameter is proposed. An example is given to illustrate the proposed procedure in detail and the numerical results show the effect of fractional derivative order on the stochastic Hopf bifurcation.


2021 ◽  
pp. 1-33
Author(s):  
Mao Lin Deng ◽  
Genjin Mu ◽  
Weiqiu Zhu

Abstract Many wake-oscillator models applied to study vortex-induced vibration (VIV) are assumed to be excited by ideal wind that is assumed to be uniform flow with constant velocity. While in the field of wind engineering, the real wind generally is described to be composed of mean wind and fluctuating wind. The wake-oscillator excited by fluctuating wind should be treated as a randomly excited and dissipated multi-degree of freedom (DOF) nonlinear system. The involved studies are very difficult and so far there are no exact solutions available. The present paper aims to carry out some study works on the stochastic dynamics of VIV. The stochastic averaging method of quasi integrable Hamiltonian systems under wideband random excitation is applied to study the Hartlen-Currie wake-oscillator model and its modified model excited by fluctuating wind. The probability and statistics of the random response of wake-oscillator in resonant or lock-in case and in non-resonant case are analytically obtained, and the theoretical results are confirmed by using numerical simulation of original system. Finally, it is pointed out that the stochastic averaging method of quasi integrable Hamiltonian systems under wideband random excitation can also be applied to other wake-oscillator models, such as Skop-Griffin model and Krenk-Nielsen model excited by fluctuating wind.


Author(s):  
W. Q. Zhu

In recent years, a class of nonlinear stochastic optimal control strategies were developed by the present author and his co-workers for minimizing the response, stabilization and maximizing the reliability and mean first-passage time of quasi Hamiltonian systems based on the stochastic averaging method for quasi Hamiltonian systems and the stochastic dynamic programming principle. This review summaries the basic idea, procedures and applications of these strategies and pointes out necessary further work.


1996 ◽  
Vol 49 (10S) ◽  
pp. S72-S80 ◽  
Author(s):  
W. Q. Zhu

Comprehensive surveys on the stochastic averaging method in random vibration until the late 1980s were given by Roberts and Spanos (1986) and Zhu (1988). The present paper reviews the recent developments and applications of the stochastic averaging method in random vibration since then. A major new development of the stochastic averaging method in recent years is the generalization of the method to multi-degree-of-freedom, quasi-Hamiltonian systems.


1997 ◽  
Vol 64 (4) ◽  
pp. 975-984 ◽  
Author(s):  
W. Q. Zhu ◽  
Z. L. Huang ◽  
Y. Q. Yang

A stochastic averaging method is proposed to predict approximately the response of quasi-integrable Hamiltonian systems, i.e., multi-degree-of-freedom integrable Hamiltonian systems subject to lightly linear and (or) nonlinear dampings and weakly external and (or) parametric excitations of Gaussian white noises. According to the present method an n-dimensional averaged Fokker-Planck-Kolmogrov (FPK) equation governing the transition probability density of n action variables or n independent integrals of motion can be constructed in nonresonant case. In a resonant case with α resonant relations, an (n + α)-dimensional averaged FPK equation governing the transition probability density of n action variables and α combinations of phase angles can be obtained. The procedures for obtaining the stationary solutions of the averaged FPK equations for both resonant and nonresonant cases are presented. It is pointed out that the Stratonovich stochastic averaging and the stochastic averaging of energy envelope are two special cases of the present stochastic averaging. Two examples are given to illustrate the application and validity of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document