The Equivalence of Maximum Power and Minimum Entropy Generation Rate in the Optimization of Power Plants

1996 ◽  
Vol 118 (2) ◽  
pp. 98-101 ◽  
Author(s):  
Adrian Bejan

It is shown that to maximize the power output of a power plant is equivalent to minimizing the total entropy generation rate associated with the power plant. This equivalence is illustrated by using two of the oldest and simplest models of power plants with heat transfer irreversibilities. To calculate the total entropy generation rate correctly, one must recognize that the optimization process (e.g., the variability of the heat input) requires “room to move,” i.e., an additional, usually overlooked, contribution to the total entropy generation rate.

Author(s):  
R. K. Jha ◽  
S Chakraborty

This paper deals with estimation of the optimal dimensions of arrays of plate fins cooled by forced convection. The optimization is achieved by minimizing the entropy generation rate using genetic algorithm-based evolutionary computing techniques. Results are presented for staggered plate fins configuration and continuous plate fins configuration. The effects of heat transfer and fluid friction on entropy generation rate are also reported.


1998 ◽  
Vol 120 (3) ◽  
pp. 797-800 ◽  
Author(s):  
W. W. Lin ◽  
D. J. Lee

Second-law analysis on the herringbone wavy plate fin-and-tube heat exchanger was conducted on the basis of correlations of Nusselt number and friction factor proposed by Kim et al. (1997), from which the entropy generation rate was evaluated. Optimum Reynolds number and minimum entropy generation rate were found over different operating conditions. At a fixed heat duty, the in-line layout with a large tube spacing along streamwise direction was recommended. Furthermore, within the valid range of Kim et al.’s correlation, effects of the fin spacing and the tube spacing along spanwise direction on the second-law performance are insignificant.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Rajkumar Sarma ◽  
Pranab Kumar Mondal

We focus on the entropy generation minimization for the flow of a viscoelastic fluid through a parallel plate microchannel under the combined influences of applied pressure gradient, interfacial slip, and conjugate heat transfer. We use the simplified Phan–Thien–Tanner model (s-PTT) to represent the rheological behavior of the viscoelastic fluid. Using thermal boundary conditions of the third kind, we solve the transport equations analytically to obtain the velocity and temperature distributions in the flow field, which are further used to calculate the entropy generation rate in the analysis. In this study, the influential role of the following dimensionless parameters on entropy generation rate is examined: the viscoelastic parameter (εDe2), slip coefficient (k¯), channel wall thickness (δ), thermal conductivity of the wall (γ), Biot number (Bi) and Peclet number (Pe). We show that there exists a particular value of the abovementioned parameters that lead to a minimum entropy generation rate in the system. We believe the results of this analysis could be of helpful in the optimum design of microfluidic system/devices typically used in thermal management, such as micro-electronic devices, microreactors, and microheat exchangers.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Rakesh Hari ◽  
Chandrasekharan Muraleedharan

Heat transfer and fluid flow in the heat pipe system result in thermodynamic irreversibility generating entropy. The minimum entropy generation principle can be used for optimum design of flat heat pipe. The objective of the present work is to minimise the total entropy generation rate as the objective function with different parameters of the flat heat pipe subjected to some constraints. These constraints constitute the limitations on the heat transport capacity of the heat pipe. This physical nonlinear programming problem with nonlinear constraints is solved using LINGO 15.0 software, which enables finding optimum values for the independent design variables for which entropy generation is minimum. The effect of heat load, length, and sink temperature on design variables and corresponding entropy generation is studied. The second law analysis using minimum entropy generation principle is found to be effective in designing performance enhanced heat pipe.


Author(s):  
Waqar A. Khan ◽  
J. R. Culham ◽  
M. M. Yovanovich

The following study will examine the effect on overall thermal/fluid performance associated with different fin geometries, including, rectangular plates as well as square, circular and elliptical pin fins. The use of EGM allows the combined effect of thermal resistance and pressure drop to be assessed through the simultaneous interaction with the heat sink. A general expression for the entropy generation rate is obtained by using the conservations equations for mass, energy, and entropy. The formulation for the dimensionless entropy generation rate is developed in terms of dimensionless variables, including the aspect ratio, Reynolds number, Nusselt number and the drag coefficient. Selected fin geometries are examined for the minimum entropy generation rate corresponding to different parameters including axis ratio, aspect ratio, and approach velocity. The results clearly indicate that the preferred fin profile is very dependent on these parameters.


2020 ◽  
Vol 194 ◽  
pp. 01032
Author(s):  
Shien Sun ◽  
Haihua Luo ◽  
Basher Hassan Al-Kbodi ◽  
Qiang Shen ◽  
Houlei Zhang

Molten salt tanks are used to store and release thermal energy. Large heat leakage through the molten salt tank foundation to the ground and high temperature of the foundation are detrimental to long-term operation safety. Here we evaluate the heat transfer and entropy generation characteristics of molten salt tank foundations with internal water cooling. Both laminar and turbulent flows reduce the heat leakage efficiently, while the power consumption for the laminar flow is negligible. The effects of the geometrical parameters are presented. Internal fins in the cooling channels decrease the heat leakage significantly. The total entropy generation rate with foundation cooling is higher than that without foundation cooling. The entropy generation rate in the solid domain is much larger than that in the fluid domain and the flow friction irreversibility is tiny. Larger insulation layer thickness decreases the heat leakage and the total entropy generation rate simultaneously. The local entropy generation rate map helps us identify where the most irreversibility is produced. The largest local entropy generation rate for the design with foundation cooling occurs near the solid-fluid interfaces and is much higher than that without foundation cooling.


2002 ◽  
Vol 124 (6) ◽  
pp. 1110-1116 ◽  
Author(s):  
M. Sasikumar ◽  
C. Balaji

A convecting-radiating fin array, which stands vertically outside of a horizontal rectangular duct, has been analyzed for various design constraints. Fully developed turbulent flow is considered inside the duct. This study takes into account the variation of fluid temperature along the duct, which has been ignored in most of the earlier studies. The one-dimensional governing equation for temperature distribution along the fin is solved for all the fins of the fin array and the total heat transfer rate per unit system mass, total entropy generation rate and optimum fin height based on maximum heat transfer rate per unit system mass are evaluated from the derived temperature profiles. These quantities are then correlated as functions of geometric and flow parameters for three types of fin profile. Optimum solutions are generated based on (i) maximum heat dissipation rate per unit system mass and (ii) minimum entropy generation rate. A procedure to combine these two optima in order to obtain a “holistic” optimum is also discussed.


Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 514
Author(s):  
Beata Niezgoda-Żelasko

This paper looks at entropy generation during ice slurry flow in straight pipes and typical heat exchanger structures used in refrigeration and air-conditioning technology. A dimensionless relationship was proposed to determine the interdependency between flow velocity and the volume fraction of ice, for which the entropy generation rates were at the minimum level in the case of non-adiabatic ice slurry flow. For pipe flow, the correlation between the minimum entropy generation rate and the overall enhancement efficiency was analyzed. As regards heat exchange processes in heat exchangers, the authors analyzed the relationship between the minimum entropy generation rate and the heat exchange surface area and exchanger efficiency.


2020 ◽  
Vol 24 (5 Part A) ◽  
pp. 3001-3011
Author(s):  
Abuzar Ghaffari ◽  
Waqar Khan ◽  
Irfan Mustafa

In this study, the influence of slip flow and temperature jump on the entropy generation rate are investigated in rectangular microducts. The Knudsen numbers are considered in the range between 0.001 and 0.1, and the aspect ratio lies between 0 and 1. The dimensionless governing equations are solved numerically using Chebyshev spectral collocation method, and the dimensionless velocity and temperature gradients are employed in the entropy generation model. The influences of the dimensionless numbers including Bejan number and irreversibility distribution ratio on the entropy generation rates are investigated and discussed through surface plots and contour diagrams. It is demonstrated that the minimum entropy generation rate exists corresponding to an optimal aspect ratio for each dimensionless number. This minimum entropy generation rate depends upon the nature of dimensionless numbers.


Sign in / Sign up

Export Citation Format

Share Document