scholarly journals Analysis of the Cavitating Draft Tube Vortex in a Francis Turbine Using Particle Image Velocimetry Measurements in Two-Phase Flow

2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Monica Sanda Iliescu ◽  
Gabriel Dan Ciocan ◽  
François Avellan

Partial flow rate operation of hydroturbines with constant pitch blades causes complex unstable cavitating flow in the diffuser cone. A particle image velocimetry (PIV) system allows investigating the flow velocity field in the case of a developing cavitation vortex, the so-called vortex rope, at the outlet of a Francis turbine runner. The synchronization of the PIV flow survey with the rope precession allows applying the ensemble averaging by phase technique to extract both the periodic velocity components and the rope shape. The influence of the turbine setting level on the volume of the cavity rope and its centerline is investigated, providing a physical knowledge about the hydrodynamic complex phenomena involved in the development of the cavitation rope in Francis turbine operating regimes.

Author(s):  
Monica Sanda Iliescu ◽  
Gabriel Dan Ciocan ◽  
Franc¸ois Avellan

Part load operation of hydro turbines with fixed pitch blades causes complex instable cavitation flow in the diffuser cone. Application of PIV systems provides the opportunity to investigate the flow velocity and turbulent fields in the case of development of cavitation vortex, the so-called turbine rope, at the outlet of a Francis turbine runner. The synchronization of the PIV flow survey with the rope precession allows to apply phase averaging techniques in order to extract both the periodic velocity components and the rope layout. The influence of the turbine setting level on the volume of the cavity rope and its center is investigated, providing a physical insight on the hydrodynamic complex phenomena involved in the development of the cavitation rope at Francis turbine operating regimes.


Author(s):  
Wael Fairouz Saleh ◽  
Ibrahim Galal Hassan

The discharge of two-phase flow from a stratified region through single or multiple branches is an important process in many industrial applications including the pumping of fluid from storage tanks, shell-and-tube heat exchangers, and the fluid flow through small breaks in cooling channels of nuclear reactors during loss-of-coolant accidents (LOCA). Knowledge of the flow phenomena involved along with the quality and mass flow rate of the discharging stream(s) is necessary to adequately predict the different phenomena associated with the process. Particle Image Velocimetry (PIV) in three dimension was used to provide detailed measurements of the flow patterns involving distributions of mean velocity, vorticity field, and flow structure. The experimental investigation was carried out to simulate two phase discharge from a stratified region through branches located on a semi-circular wall configuration during LOCA scenarios. The semi-circular test section is in close dimensional resemblance with that of a CANDU header-feeder system, with branches mounted at orientation angles of zero, 45 and 90 degrees from the horizontal. The experimental data for the phase development (mean velocity, flow structure, etc.) was done during single discharge through the bottom branch from an air/water stratified region over a three selected Froude numbers. These measurements were used to describe the effect of outlet flow conditions on phase redistribution in headers and understand the entrainment phenomena.


2015 ◽  
Vol 727-728 ◽  
pp. 358-361
Author(s):  
Shan Guang Liu ◽  
Fu Yang Cao ◽  
Xin Yi Zhao ◽  
Yan Dong Jia ◽  
Zhi Liang Ning ◽  
...  

It has been proved that the mold filling under low pressure casting can be described by the second order nonlinear differential equations characterized by damping oscillations. To obtain higher accuracy of the velocity field, the mold filling process with damping oscillations should be considered. A computational model taking the liquid level droping in the crucible into account based on two phase flow for filling process of damping oscillations is presented in this paper. Hydraulic simulation with the particle image velocimetry was adopted to verify the numerical simulation result. It is proved that the nemuerical simulation results used the presented model perfecly match with the particle image velocimetry results. Liquid level droping in crucible is the main reason for damping oscillations in mold filling. Velocity oscilations can be eliminated when the melt flow across a sudden expansion section. The detailed flow field based on the presented model can provide guidance to optimize the process parameters.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Ihab H. Alsurakji ◽  
A. Al-Sarkhi ◽  
M. Habib ◽  
Hassan M. Badr

This paper presents experimental investigations conducted to understand the influence of water-soluble drag-reducing polymers (DRPs) in single- and two-phase (stratified wavy) flow on flow-field characteristics. These experiments have been presented for water and air–water flowing in a horizontal polyvinyl chloride 22.5-mm ID, 8.33-m long pipe. The effects of liquid flow rates and DRP concentrations on streamlines and the instantaneous velocity were investigated by using particle image velocimetry (PIV) technique. A comparison of the PIV results was performed by comparing them with the computational results obtained by fluent software. One of the comparisons has been done between the PIV results, where a turbulent flow with DRP was examined, and the laminar–computational fluid dynamic (CFD) prediction. An agreement was found in the region near the pipe wall in some cases. The results showed the powerfulness of using the PIV techniques in understanding the mechanism of DRP in single- and two-phase flow especially at the regions near the pipe wall and near the phases interface. The results of this study indicate that an increase in DRP concentrations results in an increase in drag reduction up to 45% in single-phase water flow and up to 42% in air–water stratified flow.


1996 ◽  
Vol 7 (9) ◽  
pp. 1270-1280 ◽  
Author(s):  
M L Jakobsen ◽  
W J Easson ◽  
C A Greated ◽  
D H Glass

Sign in / Sign up

Export Citation Format

Share Document